Theorem: Let S be a compact subset of ℝ^n. Then S is closed.(adsbygoogle = window.adsbygoogle || []).push({});

Before looking at the book I wanted to come up with my own solution so here is what I've thought so far:

Fix a point x in S. Let Un V_n (union of V_n's...) be an open covering of S, where V_n=B(x;n). We know that there is a finite subcover of that open covering and it consists of neighborhoods. Now pick the neighborhood with maximum radius n' and consider the neighbourhood A with radius n'+1. Clearly A is open and S is a subset of A and additionally, A\S is nonempty and still open(?) (this part really needs verification). Hence, ℝ\(A\S)=ℝ\A disjoint union S is closed. Does that mean that S is closed? If not, why?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Compact sets are closed

Loading...

Similar Threads for Compact sets closed |
---|

I Problem with countably compact space |

I Compact subspace in metric space |

A Questions about Covering maps, manifolds, compactness |

I Compact Disk |

I Noncompact locally compact Hausdorff continuous mapping |

**Physics Forums | Science Articles, Homework Help, Discussion**