Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Competition between geniuses

  1. Einstein.

    6 vote(s)
    16.7%
  2. Newton.

    30 vote(s)
    83.3%
  1. Mar 30, 2010 #1
    Newton FTW
     
  2. jcsd
  3. Mar 30, 2010 #2
    Archimedes.
     
  4. Mar 30, 2010 #3
    Humanino.
     
  5. Mar 30, 2010 #4
    I actually agree with humanino, but out of the two given I'd have to go with Newton.
     
  6. Mar 30, 2010 #5
    Einstein wasn't particularly good in mathematics, he had to pick Hilbert's brain for a lot of GR-related stuff.

    And you're trying to pit him against the guy who invented calculus.
     
  7. Mar 30, 2010 #6
    Who divided by zero numerous times to invent it?

    Both produced some 'tricks' which had tremendous use. But Einstein's work wasn't that endeavouring, and Newton's work was simply inconsistent, he divided by zero, come on.
     
  8. Mar 30, 2010 #7

    BobG

    User Avatar
    Science Advisor
    Homework Helper

    How big of a coincidence is it that he and Leibniz invented calculus at approximately the same time?

    Maybe it's not. Maybe calculus was just a natural progression from DesCarte's analytic geometry.

    In any event, I still think Newton made more fundamental contributions than Einstein.
     
  9. Mar 30, 2010 #8
    My vote goes to Forest, Forest Gump.

    He invented the happy face. He was so renouned, 24 US presidents shook his hand and LBJ even examined his but tox.
     
  10. Mar 30, 2010 #9
    To mathematics?

    Einstein didn't make any contribution to mathematics as far as I know, calculus can hardly be called fundamental. Both made some very fundamental contributions to physics though.
     
  11. Mar 30, 2010 #10
    Err, what? Calculus is a fundamental part of almost all math above high school algebra.
     
  12. Mar 30, 2010 #11
    Really now? where does one encounter calculus (more properly called infinitesimal calculus) in:

    - cryptography
    - linear algebra
    - proof theory
    - set theory
    - propositional logic
    - first order logic
    - functional analysis
    - topology
    - number theory

    Calculus is probably the least fundamental part of maths out there. Calculus is founded on analysis, analysis is founded on topology, topology is founded on set theory, set theory is founded on first order logic, itself founded on proof theory. Nothing I know of in mathematics is founded on infinitesimal calculus, but maybe you can teach me some new things here.

    Infinitesimal calculus is simply a useful tool that can be used to calculate some magnitudes, there is no fundamental research going on in it.
     
  13. Mar 30, 2010 #12
    I do not think it is very wise to display such strong opinions towards what is "more fundamental". The interplay between analysis and algebra remains at all stages of mathematical sophistication. Consider linear algebra : a lot of Hilbert space constructions were motivated by harmonic analysis. Numerous theorems in number theory are obtained using complex analysis. In fact, I'll just quote Riemann's hypothesis : from the definition of the hypothesis to the latest bright idea to try to prove it through the entire history of the problem, we keep going back and forth between analysis and algebra.
     
  14. Mar 30, 2010 #13
    Fundamental is easy to define. You can express / formulate calculus in set theory, but not the reverse; thus set theory is more fundamental.

    Algebra isn't exactly fundamental either. Algebra uses numbers and the operations thereon and accepts them as existing axioms, fundamental mathematics is more interested in first defining what a number is in a given context, what a certain operation on numbers is.

    Riemann Hypothesis isn't as much fundamental as it is far-reaching. An example of a fundamental hypothesis would be the Church-Turing thesis.
     
  15. Mar 30, 2010 #14

    DaveC426913

    User Avatar
    Gold Member

    Well, more fundamental or not: in the context of the OP's question, which is about mathematical brilliance, Newton was pretty mathematically brilliant to invent calculus.
     
  16. Mar 30, 2010 #15
    Brilliant maybe, but mathematically brilliant hardly.

    Calculus is mathematically dubious, it just had profoundly wide application and use, but a work of mathematics it's not. It's basically just a trick, the larger trick is to disguise the fact that you divide by zero.
     
  17. Mar 30, 2010 #16

    DaveC426913

    User Avatar
    Gold Member

    Why do you minimize that as a "trick"? We can't divide by zero because it's forbidden, but the success of calculus comes from the fact that it is very often very useful to do so.

    Are you going to split hairs and suggest that it's not enough to invent something spectacularly useful and succesful?
     
  18. Mar 30, 2010 #17
    Why is it forbidden you might ask yourself?

    Because zero has no multiplicative inverse, after all, division by x is defined as multiplying by the multiplicative inverse of x.

    The multiplicative inverse of a real number x is a number y such that x multiplied by y results into 1.

    It is provably that each and every real number has exactly one such multiplicative inverse, except 0, and no real number has 0 as multiplicative inverse. Because of course the inverse of the inverse is the number itself, a thing that's also provable.

    As you said, it is very useful, it's also very useful to treat pi as 3.14 in most circumstances, because the result, though only an approximation, is close enough to what we need, though doing so is where you stop performing mathematics.

    No, I'm just saying that calculus how Newton invented it is not mathematics.

    The invention of the mirror was also highly useful, does that make it mathematically brilliant? Of course not, though one could argue that it was brilliant on its own.
     
  19. Mar 30, 2010 #18
    I am not using the terms "analysis" and "algebra" as specific branches which for instance could be taught in school. I am referring to a more general split of all mathematical concepts.
     
  20. Mar 30, 2010 #19

    DaveC426913

    User Avatar
    Gold Member

    No, I did not ask myself that. The rest of what you said is irrelevant, but thanks for sharing.

    How is calculus not mathematics? It's like saying the invention of the mirror is not about optics.
     
  21. Mar 30, 2010 #20
    I believe it to be quite relevant.
    Well, I doubt the person that invented the mirror knew any thing about optics, in fact, I think it for the most part was just dumb luck to be honest.

    Newton's Calculus is not mathematics because one divides by zero. Or at least, he offered little explanation to the existence of an object dx which we can add to a number r to produce r again. (therefore it must be zero, or we must define addition on some larger set) and then divides by it randomly as if it's not zero.

    It's not mathematics for the same reason that 'proving' the Riemann Hypothesis by saying 'Okay, we found a thousand cases where it applies no and no counter example, it then must be true', is not mathematics, it may be useful, and this is how most empirical sciences work, but it's not how mathematics works.

    What split is that? You mean there is some binary (or higher) split between all branches of mathematics? I fail to understand what you mean.

    What I mean is that calculus is not mathematics, analysis is mathematics, but not fundamental mathematics.
     
    Last edited: Mar 30, 2010
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Competition between geniuses
Loading...