I know the Completeness axiom applies to bounded sets, so how can it be applied here. I tried following a similar approach to proving that Q is not complete, but I'm not sure if it's correct. It went something like this:

Take a subset of S such that a + b*sqrt(2) < sqrt(3), a,b rational. Then obviously the supremum (which is sqrt(3)) is not part of S and so it's not complete. Is this valid? It seems really trivial to me...

If anyone could enlighten me, that would be great.