- #1
- 57
- 0
Homework Statement
Use the residue theorem to compute [tex]\int_0^{2\pi} sin^{2n}\theta\ d\theta[/tex]
Homework Equations
[tex]\mathrm{Res}(f,c) = \frac{1}{(n-1)!} \lim_{z \to c} \frac{d^{n-1}}{dz^{n-1}}\left( (z-c)^{n}f(z) \right)[/tex]
The Attempt at a Solution
I started with the substitution [tex]z = e^{i\theta}[/tex]
so that [tex]sin\theta= \frac{1}{2i} (z - \frac{1}{z})[/tex]
and [tex]d\theta = \frac{dz}{iz}.[/tex]
Therefore, the integral becomes: [tex]\oint_C \frac{1}{iz} \frac{1}{{(2i)}^{2n}} (z - \frac{1}{z})^{2n}\ dz = \frac{1}{i(2i)^{2n}} \oint_C \frac{(z - \frac{1}{z})^{2n}}{z}\ dz[/tex]
so there's a pole at z=0 of order 2n+1.
The residue is [tex]\frac{1}{i(2i)^{2n}(2n)!} \lim_{z \to 0} \frac{d^{2n}}{dz^{2n}} z^{2n} (z - \frac{1}{z})^{2n} = \frac{1}{i(2i)^{2n}(2n)!} \lim_{z \to 0} \frac{d^{2n}}{dz^{2n}} (z^2-1)^{2n}.[/tex]
But I have no idea how to evaluate this...
Last edited: