I have the following problems(adsbygoogle = window.adsbygoogle || []).push({});

(1)Consider the series ∑z^n,|z|<1 z is in C

I thik this series is absolutely and uniformly comvergent since the series ∑|z|^n is con vergent for |z|<1,but I have a book saying that it is absolutely convergent,not uniformly.........i am confused...

(2)for the function f(z)=1/√(z-1),z=1 is a (a)pole (b)an essential singularity ?

I think it is an essential singularity since if it is a pole,say of order m then m is a positive integer and we can write f(z)=g(z)/(z-1)^m, where g(z) is analytic at z=1 and g(1)≠0,

but the given function cannot be written in this way,but the answer is given pole,i am again confused...

Can anybody help me?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Complex analysis

Loading...

Similar Threads for Complex analysis | Date |
---|---|

A Inverse Laplace transform of a piecewise defined function | Feb 17, 2017 |

I Complex integral problem | Dec 7, 2016 |

I Problem with this estimation lemma example | Dec 6, 2016 |

A A problem about branch cut in contour integral | Dec 5, 2016 |

I Contour integration - reversing orientation | Oct 5, 2016 |

**Physics Forums - The Fusion of Science and Community**