1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Complex Contour Integral 2

  1. May 1, 2012 #1
    1. The problem statement, all variables and given/known data
    Evaluate each of the following by Cauchy's Integral formula

    a)## \int_cj \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4

    b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##



    2. Relevant equations
    ##f(z_0)=\frac{1}{2 \pi i}\int_c \frac{f(z)}{z-z_0}##


    3. The attempt at a solution

    a) ## \int_{c_j} \frac{\cos z}{3z-3\pi} dz## c1: |z|=3, c2:|z|=4

    ##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz =0## since ##\pi## lies outside c1 and hence ##\frac{\cos z}{z- \pi}## is analytic on and inside c1

    ##\frac{1}{3}\int_{c1} \frac{\cos z}{z- \pi} dz = \frac{1}{3} (2\pi i) \cos (\pi)= -\frac{2}{3} \pi i## since ##\pi## lies inside c2




    b) ##\int_c \frac{e^{3z}}{z-ln(2)} dz## c=square with corners at ##\pm(1\pm i)##

    ##\int_c \frac{e^{3z}}{z-ln(2)} dz=2 \pi i e^{3 ln(2)}=2^4 \pi i##...?

    Thanks
     
  2. jcsd
  3. May 1, 2012 #2
    Looks ok to me.
     
  4. May 2, 2012 #3
    In b) if we had ##\int_c \frac{e^{3z}}{(z-ln(2))^3} dz##

    We'd get the same answer because we have ##(z-ln(2))^3=0 \implies z-ln(2)=0##..?
     
  5. May 2, 2012 #4
    No.
    [tex]f^{(n)}(a)=\frac{n!}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz[/tex]
     
  6. May 3, 2012 #5
    ## \displaystyle \oint \frac{e^{3z}}{(z-ln(2))^{3}}dz=\frac{2\pi i}{3!} (3e^{3(ln 2)})=2^4 \pi i##..which is the same as original q part b)?
     
  7. May 3, 2012 #6
    When I plug your integral into that formula, I get:

    [tex]\frac{d^2}{dz^2}\left(e^{3z}\right)\biggr|_{z=\ln(2)}=\frac{2!}{2\pi i} \oint \frac{e^{3z}}{(z-\ln(2))^3}dz[/tex]

    or

    [tex]\oint \frac{e^{3z}}{(z-\ln(2))^3}dz=72\pi i[/tex]

    Also, try and learn to check them in Mathematica:

    Code (Text):

    NIntegrate[(Exp[3*z]/(z - Log[2])^3)*2*I*
        Exp[I*t] /. z -> 2*Exp[I*t], {t, 0, 2*Pi}]
    N[72*Pi*I]


    -1.4210854715202004*^-14 + 226.19467105847158*I

    0. + 226.1946710584651*I
     
     
  8. May 3, 2012 #7
    I didnt differentiate twice!

    Thank you!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Complex Contour Integral 2
Loading...