(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]f(z)[/tex] is a complex function that belongs to [tex]C^1[/tex]. Prove that:

[tex]\lim_{r\to{0}}\frac{1}{r^2}\oint_{\tiny{|z-z_0|=r}}{f(z)dz}=2\pi{i}\frac{\partial f}{\partial \overline z}(z_0) [/tex]

3. The attempt at a solution

Using Green's Theorem:

[tex]\oint_{{C}}{f(z,\overline z)dz}=2{i}\iint\limits_D {\frac{\partial f}{\partial \overline z}} \, dA[/tex]

I got:

[tex]\lim_{r\to{0}}\frac{1}{r^2}\oint_{\tiny{|z-z_0|=r}}{f(z)dz}= \lim_{r\to{0}}\frac{1}{r^2}2{i}\iint\limits_{|z-z_0| \le r} {\frac{\partial f}{\partial \overline z}} \, dA[/tex]

It would be perfect if [tex]\iint\limits_{|z-z_0| \le r} {\frac{\partial f}{\partial \overline z}} \, dA = {\pi}{r^2}\frac{\partial f}{\partial \overline z}(z_0)[/tex] but I don't know how to prove it (acctualy I can't even believe that it is true).

Any directions will be appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: [Complex Functions]

**Physics Forums | Science Articles, Homework Help, Discussion**