Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I have a difficult time trying to perform the following integral,

$$ j({T}, \Omega)=\int_0^{ T} d\tau \frac{\tau^2\exp(-i\Omega\tau)}{(\tau-i\epsilon)^2(\tau+i\epsilon)^2} $$

The problem is that the poles ##\pm i\epsilon## when taking the limit ##\epsilon\rightarrow 0## are located at the very origin of the contour of integrations ##\tau\in(0,{T})##. I have to find the dependence on the "total time" ##{T}## so I have to maintain a finite interval in the integral and I can´t no make the limit ##{ T}\rightarrow\infty## from the beginning.

Please, any suggestion would be very appreciated.

Sincerely.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Complex integral in finite contour at semiaxis

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**