I attempted to prove the following equality, but to no avail. Anyone is willing to lend a hand?(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int_0^{\infty} s^{2t-2v} e^{i w s} ds + \int_0^{\infty} s^{2t-2v} e^{-i w s} ds = \left[ \left( \frac{1}{-iw}\right)^{2t-2v+1} + \left( \frac{1}{iw}\right)^{2t-2v+1} \right] \Gamma(2t-2v + 1)[/tex],

where [tex]i = \sqrt{-1}[/tex], [tex]s > 0[/tex], [tex]\Gamma(\cdot)[/tex] is gamma function, [tex]-\pi \leq w \leq \pi[/tex], [tex]0 < t <1[/tex], and [tex]1 \leq v \leq \infty[/tex] is integer.

I gotalmostall the RHS, except the power terms. It seems strange as IMHO it is only true when [tex]t[/tex] is integer and that [tex]2t-2v+1 \geq 0[/tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Complex Integral

**Physics Forums | Science Articles, Homework Help, Discussion**