- #1

- 281

- 0

[tex]\int f(v) e^{iavx} dv[/tex] ?

Can I just treat i as any other constant?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Logarythmic
- Start date

- #1

- 281

- 0

[tex]\int f(v) e^{iavx} dv[/tex] ?

Can I just treat i as any other constant?

- #2

- 555

- 0

[tex]e^{i \phi} = \cos (\phi) + i \sin (\phi)[/tex]

At a guess I would say yes, [tex]i[/tex] is a constant... Just a logical guess though...

- #3

- 281

- 0

[tex]= \int f(v) \cos{avx} dv + i \int f(v) \sin{avx} dv[/tex]

Maybe?

- #4

- 586

- 1

Or you can use Euler's formula and write it as the sum of cos and sin, yes.

- #5

- 555

- 0

Logarythmic, looks fine by me as long as you put [tex]avx[/tex] in brackets ;)

- #6

- 281

- 0

[tex]w(x) = \int_{-u_0}^{u_0} i2 \pi v e^{i2 \pi vx} dv = \frac{1}{\pi x^2} \left[ 2 \pi u_0 x \cos{(2 \pi u_0 x)} - \sin{(2 \pi u_0 x)} \right][/tex]

- #7

- 555

- 0

I got the same, so I guess it's correct.

Share: