Complex line integrallll

  • Thread starter laleler1
  • Start date
  • #1
2
0

Homework Statement



for [itex]n=1,2,3,...[/itex] , evaluate the integral,

[itex]I= \int_C\frac{e^{iz}}{z^n}dz[/itex]
where [itex]C [/itex] is a curve like [itex]z(t)=e^{it}[/itex] and [itex]0 \leq t \leq 2\Pi[/itex]

Homework Equations





The Attempt at a Solution


I tried to use Cauchy integral formula; that

[itex]f^{(n)}(z)=\frac{n!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n+1}}d\zeta[/itex]

then we can obtain,

[itex]f^{(n-1)}(z)=\frac{(n-1)!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n}}d\zeta[/itex]

[itex]f^{(n-1)}(z)=\frac{(n-1)!}{2 \Pi i}\int_C\frac{f(\zeta)}{(\zeta-z)^{n}}d\zeta[/itex]

[itex](e^{iz})^{(n-1)}(z) \Big\vert_{z=0}=\frac{(n-1)!}{2 \Pi i}\int_C\frac{e^{iz}}{z^{n}}d\zeta[/itex]

[itex]i^{n-1}=\frac{(n-1)!}{2 \Pi i}\int_C\frac{e^{iz}}{z^{n}}d\zeta [/itex]

[itex]\int_C\frac{e^{iz}}{z^{n}}d\zeta=\frac{i^{n-1} 2 \Pi i} {(n-1)!} [/itex]

[itex]~~~~~~~~=\frac{i^n 2 \Pi} {(n-1)!} [/itex] .

can you check, is it right??????
 

Answers and Replies

  • #2
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
15,038
1,610
Yes, that's correct.

You could also expand the integrand as a Laurent series and use the residue theorem.
 

Related Threads on Complex line integrallll

  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
23
Views
437
  • Last Post
Replies
4
Views
5K
  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
13
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
6K
Top