1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Complex logs

  1. Oct 23, 2006 #1
    Hi, I'm kinda confused with the following, I must be looking at it wrong

    Determinie all values of log(z) and Log(z):

    a.) -9+2i

    im confused when it comes to the angle. It is going to be in the form [tex]re^{i \theta}[/tex]. where [tex]r= \sqrt{85}[/tex]

    Thanks.
     
  2. jcsd
  3. Oct 24, 2006 #2

    benorin

    User Avatar
    Homework Helper

    Know that [tex]\log (z)= \mbox{Log} (z) +2k\pi i[/tex] for [tex]k\in\mathbb{Z}[/tex] is the multivalued logarithm function, and that [tex]\mbox{Log} (z)= \mbox{Log} |z| i\Arg (z)+2k\pi i[/tex] is the principal branch of the multivalued function [tex]\log (z)[/tex].

    Now if [tex]z=re^{i\theta}[/tex] then [tex]\log (z) =\log (re^{i\theta}= \mbox{Log} (r) + i\theta + 2k\pi i[/tex] and hence for [tex]z=-9+2i[/tex] we have [tex]r=\sqrt{85}[/tex] and [tex]\theta = \tan ^{-1} \left( -\frac{9}{2}\right)[/tex] so that

    [tex]\log (-9+2i) = \mbox{Log} \sqrt{85} + i \tan ^{-1} \left( -\frac{9}{2}\right) + 2k\pi i, \mbox{ for } k\in\mathbb{Z}[/tex]

    is all values of [tex]\log (-9+2i)[/tex] and [tex]\mbox{Log} (-9+2i)[/tex] is the principal value of [tex]\log (-9+2i)[/tex] (so put [tex]k=0[/tex] in the above to get

    [tex]\mbox{Log}(-9+2i) = \mbox{Log} \sqrt{85} + i \tan ^{-1} \left( -\frac{9}{2}\right)[/tex].
     
    Last edited: Oct 24, 2006
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...
Similar Threads for Complex logs Date
Simplifying natural log of complex number Oct 3, 2015
Laurent series expansion of Log(1+1/(z-1)) Oct 20, 2014
Log of Complex Variable Jun 16, 2012
Complex Log(z) Dec 25, 2011
Integration and log of a complex number Oct 18, 2011