Hi there I got a couple of question regarding the topic above(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

(a) Given the integrals

[tex]\int \limit_{0}^{i} \frac{dz}{(1-z)^2}[/tex]

[tex]\int_{i}^{2i} (cos(z)) dz [/tex]

[tex]\int_{0}^{i\pi} e^{z} dz[/tex]

(1)write this as a Line integral on the form [tex]\int_{\gamma} f(\gamma(t)) \cdot \gamma'(t) dt[/tex] and

(2)Next find sum the of integrals using anti-derivatives.

(b)

Here am I unsure. How do I approach to calculate ?

[tex]\int_{\gamma_{n}} \frac{dz}{z}[/tex] where is [tex]\gamma_{n}:[0,2\pi] \rightarrow \mathbb{C} [/tex] is a parameter presentation of the unit circle, where [tex]n \in \mathbb{Z} - \{0\}[/tex] and which runs through

[tex]\gamma_{n}(t) = e^{itn}[/tex]

2. Relevant equations

Have I understood and solved (a) correctly?

What about (b) could somebody please be so kind give me a hint/(some help) :) ?

3. The attempt at a solution

attempted Solution A:

I choose [tex]\gamma(t) = t \cdot i[/tex] where [tex]t \in [0,1][/tex]

Since [tex]\gamma(t)' = i[/tex] then the solution is

[tex]\int_{\gamma} \frac{dt \cdot i}{(1-(it))^2} = \int_{0}^{1} \frac{dt \cdot i}{(1-(it))^2} = -1/2 + 1/2 \cdot i[/tex]

the finding the sum of the original integral

[tex]\int_{0}^{i} \frac{dz}{(1-(z))^2} = -1/2 + 1/2 \cdot i [/tex]

Second integral:

[tex]\int_{0}^{i\pi} e^{z} dz = \int_{\gamma} (e^{it} \cdot i) dt = \int_{0}^{\pi} (e^{it} \cdot i) dt = -2 [/tex]

finding the sum of the integral:

[tex]\int_{0}^{i\pi} e^{z} dz = -2[/tex]

(B) Attempted solution

If [tex]\int_{\gamma_{n}} \frac{dz}{z}[/tex], then to solve this integral using the definition of the line integral

then I take [tex]\int_{\gamma_{n}} \frac{dz}{z} = \int_{0}^{2\pi} \frac{1}{e^{t \cdot n \cdot i}} \cdot \frac{d}{dt}(e^{t \cdot n \cdot i}) dt = 2 \cdot n \cdot \pi \cdot i[/tex]

where [tex]n \in \mathbb{Z} - \{0\}[/tex]

Could this be the solution?

Best Regards

Fred

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Complex valued line integrals

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**