- #1
- 5
- 0
g(f(x))=\( g(f(x))=2/(1/x-4)+4 \)
What is your question? If it's to find a possible combination of f(x) and g(x), theng(f(x))=\( g(f(x))=2/(1/x-4)+4 \)
$\frac{2}{\frac{1}{x}- 4}+ 4= \frac{2}{\frac{1}{x}- \frac{4x}{x}}+ 4= \frac{2}{\frac{1-4x}{x}}+ 4= \frac{2x}{1- 4x}+ 4$.g(f(x))=\( g(f(x))=2/(1/x-4)+4 \)
No, 2(x- 4)+ 4= 2x- 8+ 4= 2x- 4.Then you have to put $f(x) $ in $g(f(x))$ and solve. Considering the picture you have sent $f(x) = $ $1 \over (x-4)$ and $g(x)=$ $2 \over x$ $+4$
so we have $g(f(x))= 2(x-4) + 4 = 2x + 4$