- #1
- 646
- 1
I have two functions:
[tex]f(x,y,z)=\sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\vec{c}(t)=<cos(t),sin(t),1>[/tex]
I need to find:
[tex](f \circ c)'(t)[/tex]
and
[tex](f \circ c)'(0)[/tex]
I don't have any answers to work with, but I'm guessing I just stick f into c to get this:
[tex]\vec{c}(t)=<cos(\sqrt{x^{2}+y^{2}+z^{2}}),sin(\sqrt{x^{2}+y^{2}+z^{2}}),1>[/tex]
Then once I have that get the derivative matrix and plug in 0?
[tex]f(x,y,z)=\sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\vec{c}(t)=<cos(t),sin(t),1>[/tex]
I need to find:
[tex](f \circ c)'(t)[/tex]
and
[tex](f \circ c)'(0)[/tex]
I don't have any answers to work with, but I'm guessing I just stick f into c to get this:
[tex]\vec{c}(t)=<cos(\sqrt{x^{2}+y^{2}+z^{2}}),sin(\sqrt{x^{2}+y^{2}+z^{2}}),1>[/tex]
Then once I have that get the derivative matrix and plug in 0?