1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Computing Fourier series

  1. Mar 14, 2010 #1
    1. The problem statement, all variables and given/known data
    Find the Fourier series for [tex]y(x)=\begin{cases}
    A\sin(\frac{2\pi x}{L}) & 0\leq x\leq\frac{L}{2}\\
    0 & \frac{L}{2}\leq x\leq L\end{cases}[/tex]

    2. Relevant equations
    [tex]B_{n}=\frac{2}{L}\int_{0}^{L}y(x)\sin(\frac{n\pi x}{L})dx[/tex]

    3. The attempt at a solution

    [tex]B_{n}=\frac{2}{L}\int_{0}^{L/2}A\sin(\frac{2\pi x}{L})\sin(\frac{n\pi x}{L})dx[/tex]

    [tex]=\frac{2}{L}\int_{0}^{\frac{L}{2}}A\sin(\frac{\pi x}{L/2})\sin(\frac{(n/2)\pi x}{L/2})dx[/tex]

    [tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{\frac{n}{2}\pi x}{p})dx[/tex]

    0 & \frac{n}{2}=1\\
    \frac{A}{2} & \frac{n}{2}\in\mathbb{Z}\text{ and }\frac{n}{2}\neq1\end{cases}[/tex]

    So this takes care of the even values of n, but I'm not sure what to do when n is odd.

    [tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{(\frac{2k+1}{2})\pi x}{p})dx[/tex]

    [tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{(k\pi x+\frac{1}{2}\pi x}{p})dx[/tex]

    [tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})[\sin(\frac{k\pi x}{p})\cos(\frac{\frac{1}{2}\pi x}{p})+\cos(\frac{k\pi x}{p})\sin(\frac{\frac{1}{2}\pi x}{p})]dx[/tex]

    I'm not really sure if this is going anywhere. The final answer should be [tex]B_{n}=\frac{4A(-1)^{\frac{n+1}{2}}}{\pi(n^{2}-4)}[/tex], where n is odd.

    Any ideas? Thank you.
    Last edited: Mar 14, 2010
  2. jcsd
  3. Mar 14, 2010 #2


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Try using a trig identity at this point.

    [tex]\sin(a) \sin (b) = ?[/tex]
  4. Mar 14, 2010 #3
    Thanks, that worked perfectly!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook