• Support PF! Buy your school textbooks, materials and every day products Here!

Computing Fourier series

  • Thread starter Knissp
  • Start date
  • #1
75
0

Homework Statement


Find the Fourier series for [tex]y(x)=\begin{cases}
A\sin(\frac{2\pi x}{L}) & 0\leq x\leq\frac{L}{2}\\
0 & \frac{L}{2}\leq x\leq L\end{cases}[/tex]


Homework Equations


[tex]B_{n}=\frac{2}{L}\int_{0}^{L}y(x)\sin(\frac{n\pi x}{L})dx[/tex]


The Attempt at a Solution



[tex]B_{n}=\frac{2}{L}\int_{0}^{L/2}A\sin(\frac{2\pi x}{L})\sin(\frac{n\pi x}{L})dx[/tex]

[tex]=\frac{2}{L}\int_{0}^{\frac{L}{2}}A\sin(\frac{\pi x}{L/2})\sin(\frac{(n/2)\pi x}{L/2})dx[/tex]

[tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{\frac{n}{2}\pi x}{p})dx[/tex]

[tex]=\begin{cases}
0 & \frac{n}{2}=1\\
\frac{A}{2} & \frac{n}{2}\in\mathbb{Z}\text{ and }\frac{n}{2}\neq1\end{cases}[/tex]

So this takes care of the even values of n, but I'm not sure what to do when n is odd.

[tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{(\frac{2k+1}{2})\pi x}{p})dx[/tex]

[tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})\sin(\frac{(k\pi x+\frac{1}{2}\pi x}{p})dx[/tex]

[tex]=\frac{1}{p}\int_{0}^{p}A\sin(\frac{\pi x}{p})[\sin(\frac{k\pi x}{p})\cos(\frac{\frac{1}{2}\pi x}{p})+\cos(\frac{k\pi x}{p})\sin(\frac{\frac{1}{2}\pi x}{p})]dx[/tex]

I'm not really sure if this is going anywhere. The final answer should be [tex]B_{n}=\frac{4A(-1)^{\frac{n+1}{2}}}{\pi(n^{2}-4)}[/tex], where n is odd.

Any ideas? Thank you.
 
Last edited:

Answers and Replies

  • #2
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,394
180
[tex]B_{n}=\frac{2}{L}\int_{0}^{L/2}A\sin(\frac{2\pi x}{L})\sin(\frac{n\pi x}{L})dx[/tex]
Try using a trig identity at this point.

[tex]\sin(a) \sin (b) = ?[/tex]
 
  • #3
75
0
Thanks, that worked perfectly!
 

Related Threads on Computing Fourier series

Replies
5
Views
9K
  • Last Post
Replies
21
Views
1K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
4
Views
565
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
8
Views
1K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
17
Views
2K
Top