I know when a series is conditionally convergent and I understand that being conditionally convergent means that rearrangement of the terms will not always lead to the same sum, but I am unsure why exactly this is important? I have not really experienced a time where I am rearranging terms anyway (I am in Calc BC so maybe later on I will but not now). I am studying Taylor Series right now and it seems that conditionally convergent series still converge even if it is not "absolutely". I'm worried I'm missing some large concept because I do not see a big importance if something is conditional or absolute. Thanks for any explanations, I have tried to look online but everything I find seems to only explain how to determine conditional convergence and not the importance (other than explaining the rearrangement of terms part).(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Conditional Convergence

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**