I was helping my 17 year old daughter (just starting calculus) with the optimization problem of maximizing the volume of a right circular cone that can inscribed in a sphere. She tried what she thought was a short cut by using a cone with vertex at the center the sphere (instead of the top) and couldn’t understand why it didn’t yield the right answer. I tried to explain that she solved a different problem but she couldn’t understand why the solution to the simpler problem wasn’t also the solution to the stated problem. It didn’t help that the very next problem was a distance problem where the book suggested a short cut of minimizing the square of the distance rather than the distance (to avoid square roots). To her, both were the same (i.e. a logical shortcut). I’ve since been struggling with how to explain the apparent discrepancy. I’ve thought about using a triangle/circle analogy and say that the two triangles aren’t similar. Any other ideas?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Cone incribed within a sphere

**Physics Forums | Science Articles, Homework Help, Discussion**