Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Conformal Mapping

  1. Oct 31, 2012 #1
    Hello folks,

    I am trying to find a conformal mapping transform function that maps the following region in z-plane into interior of a unit circle in w-plane:

    [itex]|z-i|<\sqrt{2}\text{ ....AND.... }|z+i|<\sqrt{2}[/itex]

    attachment.php?attachmentid=52520&stc=1&d=1351728946.png

    Many thanks in advance for help & clues.
    Max.
     

    Attached Files:

    Last edited: Oct 31, 2012
  2. jcsd
  3. Nov 6, 2012 #2
    The most general way to calculate a conformal mapping is a Schwarz-Christoffel mapping. This integral however can't be solved analytically in most cases.

    You can split the domain in two along the imaginary axis and try to map the semi circle into one half, and then mirror it to get the other half. I know that you can get that half-shape through ζ=z^2 if you original domain is a square. You can see it here (p. 246):

    http://www.math.umn.edu/~olver/pd_/cm.pdf [Broken]

    All you need then is a mapping from unit disk to unit square. One way you could (maybe) do this is by starting with the half-disk, tranform it to a half-plane, and then fold it to a square using a Schwarz-Christoffel mapping. I think that this case can be solved analytically. You then mirror your domain along the imaginary axis and you're done. This is easier said than done of course, but that is the nature of conformal mappings :biggrin:
     
    Last edited by a moderator: May 6, 2017
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Conformal Mapping
  1. Continuous map (Replies: 3)

  2. Conformal mapping (Replies: 5)

Loading...