Hi, I came across a problem which seems to be pretty simple, but I'm stuck .(adsbygoogle = window.adsbygoogle || []).push({});

Given a Hamiltonian:

[tex]H=\frac{\vec{p}^2}{2m}+V(\vec{x})[/tex]

If |E> is a bound state of the Hamiltonian with energy eigenvalue E, show that: [tex]<E| \vec{p} |E>=0[/tex]

-----------------------------------

So I've been trying something like this:

[tex]\frac{1}{2m}<E|\vec{p} \cdot \vec{p}|E> + <E|V(\vec{x})|E> = E<E|E> = E[/tex]

but I have no idea how to proceed from here.

Thanks in advance!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Confused by simple quantum problem

Loading...

Similar Threads for Confused simple quantum | Date |
---|---|

I Spin confusion: Stern-Gerlach experiment | Jan 22, 2018 |

I Confused about Dirac Notation | Jan 13, 2018 |

B Two Confusing Entanglement Scenarios | Dec 20, 2017 |

I Probability vs radial density-confusion | Oct 25, 2017 |

Simple Energy Levels confusion | Nov 1, 2009 |

**Physics Forums - The Fusion of Science and Community**