- #1

- 3

- 0

Ok, this is probably the simplest problem I was assigned out of an intro physics course and simply cannot figure out how to go about it.

Hockey Puck B at rest is struck by puck A, which was traveling at 40.0m/s in the +x direction. After they hit, A is deflected 30 degrees above the x axis, and Puck B acquires a velocity at 45 degrees below the x axis. The pucks have the same mass and friction forces aren't considered.

a) The speed of each puck after collision

b) what fraction of the original kinetic energy of puck A dissipates during the collision

I have the solutions, but can't figure out how to solve for them. Yes, I suck at physics :( Any help would be appreciated.

Since the message says solutions can't be solved for us, just a hint on where to start would be useful. I'm just ending up with ridiculous equations with sin/cos trying to account for the conservation of momentum.

Hockey Puck B at rest is struck by puck A, which was traveling at 40.0m/s in the +x direction. After they hit, A is deflected 30 degrees above the x axis, and Puck B acquires a velocity at 45 degrees below the x axis. The pucks have the same mass and friction forces aren't considered.

a) The speed of each puck after collision

b) what fraction of the original kinetic energy of puck A dissipates during the collision

I have the solutions, but can't figure out how to solve for them. Yes, I suck at physics :( Any help would be appreciated.

Since the message says solutions can't be solved for us, just a hint on where to start would be useful. I'm just ending up with ridiculous equations with sin/cos trying to account for the conservation of momentum.

Last edited: