Constant of proportionality in probability of superposition of states

In summary: True, but this does not change the important point, that is that ##k=\left<\psi|\psi\right>^{-1}## doesn't depend on what outcome you get when measuring an observable. Also, I have used this inner product notation because it's the easiest and we don't have degeneracy, in general, you write the probabilities in terms of the projectors so we don't care about the norm of the...projectors.
  • #1
Phys12
351
42
Homework Statement
Assume that the measurement of the energy on a state |A> always yields the value 'a' and the measurement of the energy on a state |B> always yields the value 'b'. Now consider a quantum system in the superposition state (1+2i)|A> + (1-i)|B>. What are the probabilities Pa and Pb to measure energy and 'a' and 'b' respectively?
Relevant Equations
For a state Ψ = α|A> + β|B>;
Pa ∝ |α|^2
and Pb ∝ |β|^2
Using the fact that
Pa ∝ |α|^2 and Pb ∝ |β|^2, we get:
Pa = k|α|^2 and Pb = k|β|^2

Since the probability of measuring the two states must add up to 1, we have Pa + Pb = 1 => k = 1/(|α|^2 + |β|^2). Substituting this in Pa and Pb, we get:

Pa = |α|^2/(|α|^2 + |β|^2)
and Pb = |β|^2/(|α|^2 + |β|^2)

And using these equations, I could get the correct answer. However, I assumed that the constant of proportionality is the same for calculating Pa and Pb and in fact, it is. But I am not sure why that is the case...why do they have to be the same?
 
  • Like
Likes PeroK
Physics news on Phys.org
  • #2
Quantum Mechanics is based in some postulates, one of those (usually called the 3rd postulate) says that given an observable ##A## (I will assume that has no degeneracy, that is your case if we assume ##a\neq b##) then the probability of measure a given output ##a_i## with corresponding eigenstate ##\left|\psi_i\right>## is $$\frac{\left|\left<\psi_i|\psi\right>\right|^2}{\left<\psi|\psi\right>}$$. Note that this "constant of proportionality" ##\left|\left<\psi|\psi\right>\right|^{-1}## does not depend on what outcome you measure.
 
Last edited:
  • #3
Gaussian97 said:
Quantum Mechanics is based in some postulates, one of those (usually called the 3rd postulate) says that given an observable ##A## (I will assume that has no degeneracy, that is your case if we assume ##a\neq b##) then the probability of measure a given output ##a_i## with corresponding eigenstate ##\left|\psi_i\right>## is $$\left|\frac{\left<\psi_i|\psi\right>}{\left<\psi|\psi\right>}\right|^2$$. Note that this "constant of proportionality" ##\left|\left<\psi|\psi\right>\right|^{-2}## does not depend on what outcome you measure.
Oh, I see. So the | ⟨ψ|ψ⟩|^2 term here is equivalent to (|α|^2 + |β|^2) in my expressions? And that's just because ψ is a superposition of eigenstates with coefficients alpha and beta. Is that correct?
 
  • #4
The reason why the ##\left|\left<\psi\left|\right.\psi\right>\right|^2## is needed is that the given state ##\left|\right.\psi\left.\right>## is not normalized to 1.
 
  • Like
Likes PeroK
  • #5
Phys12 said:
Oh, I see. So the | ⟨ψ|ψ⟩|^2 term here is equivalent to (|α|^2 + |β|^2) in my expressions? And that's just because ψ is a superposition of eigenstates with coefficients alpha and beta. Is that correct?

Exact, again one of the postulates of QM is that any observable ##A## is described by a hermitic operator, is not difficult to show that then the eigenstates of ##A## are orthogonal, then:
$$\left<\psi|\psi\right>=\left|\alpha\right|^2\left<A|A\right>+\alpha^*\beta\underbrace{\left<A|B\right>}_{0}+\alpha\beta^*\underbrace{\left<B|A\right>}_{0}+\left|\beta\right|^2\left<B|B\right>=\left|\alpha\right|^2+\left|\beta\right|^2$$
 
  • Like
Likes PeroK and Phys12
  • #6
Phys12 said:
Problem Statement: Assume that the measurement of the energy on a state |A> always yields the value 'a' and the measurement of the energy on a state |B> always yields the value 'b'. Now consider a quantum system in the superposition state (1+2i)|A> + (1-i)|B>. What are the probabilities Pa and Pb to measure energy and 'a' and 'b' respectively?
Relevant Equations: For a state Ψ = α|A> + β|B>;
Pa ∝ |α|^2
and Pb ∝ |β|^2

Using the fact that
Pa ∝ |α|^2 and Pb ∝ |β|^2, we get:
Pa = k|α|^2 and Pb = k|β|^2

Since the probability of measuring the two states must add up to 1, we have Pa + Pb = 1 => k = 1/(|α|^2 + |β|^2). Substituting this in Pa and Pb, we get:

Pa = |α|^2/(|α|^2 + |β|^2)
and Pb = |β|^2/(|α|^2 + |β|^2)

And using these equations, I could get the correct answer. However, I assumed that the constant of proportionality is the same for calculating Pa and Pb and in fact, it is. But I am not sure why that is the case...why do they have to be the same?
If the constant of proportionality could be different for A and B, then the state you were given would be completely ambiguous and meaningless.

In an extreme case you could have ##k_B = 0## and then you'd have simply state A.
 
  • #7
Gaussian97 said:
Exact, again one of the postulates of QM is that any observable ##A## is described by a hermitic operator, is not difficult to show that then the eigenstates of ##A## are orthogonal, then:
$$\left<\psi|\psi\right>=\left|\alpha\right|^2\left<A|A\right>+\alpha^*\beta\underbrace{\left<A|B\right>}_{0}+\alpha\beta^*\underbrace{\left<B|A\right>}_{0}+\left|\beta\right|^2\left<B|B\right>=\left|\alpha\right|^2+\left|\beta\right|^2$$
Although, if you allow ##\psi## to be not normalized, then how do know ##A## and ##B## are normalized?
 
  • #8
PeroK said:
Although, if you allow ##\psi## to be not normalized, then how do know ##A## and ##B## are normalized?
True, but this does not change the important point, that is that ##k=\left<\psi|\psi\right>^{-1}## doesn't depend on what outcome you get when measuring an observable. Also, I have used this inner product notation because it's the easiest and we don't have degeneracy, in general, you write the probabilities in terms of the projectors so we don't care about the norm of the basis.
 
  • #9
Gaussian97 said:
True, but this does not change the important point, that is that ##k=\left<\psi|\psi\right>^{-1}## doesn't depend on what outcome you get when measuring an observable. Also, I have used this inner product notation because it's the easiest and we don't have degeneracy, in general, you write the probabilities in terms of the projectors so we don't care about the norm of the basis.
If it doesn't say A and B are normalized then the question is ill-posed. Suppose, for example, that ##A = 2B##?

I would say the question just looks wrong with those coefficients. ##\psi## is not a valid state.

In any case, how can you assume that ##\langle A|A \rangle = 1## if states are not, by definition, normalized?
 
  • #10
Well, if ##\left|A\right>## and ##\left|B\right>## are not orthogonal, then the question doesn't make sense in any case, even if they are normalized, since in this case, the eigenvalues must be the same and the probability of getting anything is trivially 1. But ##\left|\psi\right>## would still be a valid state (if you consider non-normalized states valid).

In general, if ##\left|A\right>## is not normalized you simply compute the probability with the projector, i.e. a Hermitian ##P_A##operator such that ##P_A^2=P_A## and ##P_A\left|A\right>=\left|A\right>##. Then the probability of measuring the outcome ##a## is ##\frac{\left\|P_A\left|\psi\right>\right\|^2}{\left<\psi|\psi\right>}##. Here you don't need to supose ##\left|A\right>## normalized. Indeed, if ##a## is a non-degenerated eigenvalue then $$P_A=\frac{\left|A\right>\left<A\right|}{\left<A|A\right>}$$
 

1. What is the constant of proportionality in probability of superposition of states?

The constant of proportionality in probability of superposition of states is a mathematical factor that relates the probability of a quantum system being in a particular state to the amplitude of that state in the superposition. It is denoted by the symbol "C" and is often called the normalization constant.

2. How is the constant of proportionality calculated?

The constant of proportionality is calculated by taking the square root of the sum of the squares of the amplitudes of all possible states in the superposition. This ensures that the total probability of the system being in any state is equal to 1, as required by the laws of quantum mechanics.

3. What is the significance of the constant of proportionality in quantum mechanics?

The constant of proportionality plays a crucial role in determining the probability of a quantum system being in a particular state. It is a fundamental concept in quantum mechanics and is used to calculate the amplitudes and probabilities of various quantum phenomena, such as superposition and entanglement.

4. Can the constant of proportionality be negative?

No, the constant of proportionality cannot be negative. It is always a positive value, as it is calculated by taking the square root of the sum of squares of amplitudes, which are always positive. A negative value would result in an imaginary probability, which is not physically meaningful.

5. How does the constant of proportionality affect the probability of superposition of states?

The constant of proportionality determines the overall magnitude of the probability of a system being in a particular state. A larger constant of proportionality means a higher probability of the system being in that state, while a smaller constant of proportionality means a lower probability. It is a crucial factor in understanding and predicting the behavior of quantum systems.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
831
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
26
Views
2K
  • Precalculus Mathematics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
2K
  • Advanced Physics Homework Help
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
7
Views
2K
  • Quantum Physics
Replies
29
Views
2K
Replies
5
Views
1K
Back
Top