1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Constructing a pair of sequences such that

  1. Mar 23, 2012 #1
    1. The problem statement, all variables and given/known data

    The question asks me to construct a pair of sequences {a_n} from n=1 to inf and {b_n} from n=1 to inf such that a_n and b_n are both greater than or equal to zero for all integers n, both sequences are decreasing, and both series of these sequences diverge, but also such that the series c_n from n=1 to inf converges, where c_n is defined as the min{a_n,b_n}.

    2. Relevant equations

    none

    3. The attempt at a solution

    I've played around with a lot of sequences whose series I know to be convergent, mainly variants of 1/n, but I cannot figure out how to make two sequences such that when choosing the smaller nth term from the two sequences I wind up with a convergent series. The problem I see is that every convergent decreasing series I think of requires each term to get smaller much faster than any decreasing divergent series I can think of. I'm sure there is something really obvious I'm missing, so I don't know if anyone can give a hint without giving it away, but is there another angle from which I should look at this?

    Thanks!
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Constructing a pair of sequences such that
  1. Is this a sequence? (Replies: 1)

Loading...