Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Continuity in Minkowski space

  1. Aug 31, 2013 #1
    How "continuity" of a map Τ:M→M, where M is a Minkowski space, can be defined? Obviously I cannot use the "metric" induced by the minkowskian product:
    x[itex]\cdot[/itex]y = -x[itex]^{0}[/itex]y[itex]^{0}[/itex]+x[itex]^{i}[/itex]y[itex]^{i}[/itex]
    for the definition of coninuity; it is a misinformer about the proximity of points. Should I use the Euclidean metric instead?

  2. jcsd
  3. Aug 31, 2013 #2


    User Avatar
    Science Advisor

    Minkowski space-time is just ##\mathbb{R}^{4}## with the canonical Euclidean topology. Continuity of endomorphisms of Minkowski space-time is with respect to this topology.
  4. Aug 31, 2013 #3
    I took the wikipedia's definition of Minkowski space: a 4-D real vector space with a symmetric, bilinear, non-degenerate quadratic form with signature (1,3). From this point of view, can a consistent metric induced by that quadratic form? If not, then according to your comment, I will have to make use and of the Eucliden norm on that vector space, in order to define continuity.

  5. Aug 31, 2013 #4


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

  6. Aug 31, 2013 #5


    User Avatar
    Science Advisor

    I've never seen pseudo-Riemannian metric tensors on vector spaces being used to induce a topology on the vector space but that's not to say that it isn't defined (you can define it in the same way). The canonical topology on Minkowski space-time would just be that generated by the base of open balls of the Euclidean metric yes. There are other topologies you can endow as well of course and they don't have to stem from a metric.
  7. Sep 1, 2013 #6
    The beautiful [math] book "The Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity" by Naber has an appendix that discusses topology for Minkowski spacetime.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook