Are projections always continuous? If they are, is there simple way to prove it?(adsbygoogle = window.adsbygoogle || []).push({});

If P:V->V is a projection, I can see that P(V) is a subspace, and restriction of P to this subspace is the identity, and it seems intuitively clear that vectors outside this subspace are always mapped to shorter ones, but I don't know how to prove it.

If V was a Hilbert space, and we knew P(V) is closed, then I could prove this using the projection theorem. However only way to prove that P(V) is closed, that I know, is to use continuity of P.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Continuity of projection

**Physics Forums | Science Articles, Homework Help, Discussion**