Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Contour int.

  1. Aug 8, 2006 #1

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Is it just me, or i can't get the residues right...?

    [tex] \int_{0}^{\infty} \frac{\ln^{2}z}{1+z^{2}} \ dz [/tex]

    I get [itex]\frac{\pi^{3}}{2} [/itex] , but the result is [tex]\frac{\pi^{3}}{8} [/itex].

    I make a substitution [itex] z=e^{t} [/itex]. And then convert to a contour integral closing it in the upper half-plane, where i have the poles [tex] i\frac{\pi}{2} + k\pi [/tex] k in N.

    So please help me.

    Daniel.
     
  2. jcsd
  3. Aug 8, 2006 #2

    shmoe

    User Avatar
    Science Advisor
    Homework Helper

    I don't see that the contour over the upper semi-circle will be going to zero. The sum of the residues in the upper half plane is divergent no?

    You can take a different approach, instead consider

    [tex]\int_{-\infty}^{\infty}\frac{\log^{2}{z}}{1+z^2}dz[/tex]

    and look at a contour from -R to R with a small semicircle of radius r at the origin in the upper half plane and a large one of radius R in the upper half plane as well. As r->0 and R->infinity, these will contribute 0. From (-infinity,0) replace log(z) with log|z|+Pi*i and expand the square. One of the integrals is the one you are after, one can be evaluated as an arctan, one will essentially be the integral of log(z)/(1+z^2) from 0 to infinity (this last integral is zero, use the same contour to prove this). Finally you enclose just one simple pole at z=i.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook