Contravaint and covariant

  • Thread starter yukcream
  • Start date
  • #1
59
0

Main Question or Discussion Point

Can anyone explain to me what is contravariant and covariant? I just know that they are tensors with specific transformation properties (from website of MathWorld), i also know that the relation between two is the -ve sign.
Then dose it mean that:
given a 4-velocity of a particle is the vector
u' = dx^i/ds then how about the covariant of u'?

furthermore

given u' = { 1/sqrt (1-V^2/C^2) , v/c sqrt (1-V^2/ C^2) , then I wnat to ask am I right that the covaritant of u is { -1/sqrt (1-V^2/C^2) , -v/c sqrt (1-V^2/ C^2)?

if yes i can't get the relation u'u_' =1 (u_' indicate a subscripts)

yukyuk
 

Answers and Replies

  • #2
selfAdjoint
Staff Emeritus
Gold Member
Dearly Missed
6,786
5
One property that is easy to spot is that contravariant tensors are like vectors, little arrows in the tangent space you know, while covariant tensors are like differential operators. Indeed I think it is true that all the classical covariant tensors, except the metric itself, come from differntial operations, especially covariant differentiation. Because the Riemann-Christoffel or curvature tensor can be constructed as the difference between the second covariant derivatives of an arbitrary contravariant vector with opposite orders of differentiation, and the Ricci and Einstein tensors derive their contravariant components from R-C.
 
  • #3
pervect
Staff Emeritus
Science Advisor
Insights Author
9,623
881
yukcream said:
Can anyone explain to me what is contravariant and covariant? I just know that they are tensors with specific transformation properties (from website of MathWorld), i also know that the relation between two is the -ve sign.
Then dose it mean that:
given a 4-velocity of a particle is the vector
u' = dx^i/ds then how about the covariant of u'?

furthermore

given u' = { 1/sqrt (1-V^2/C^2) , v/c sqrt (1-V^2/ C^2) , then I wnat to ask am I right that the covaritant of u is { -1/sqrt (1-V^2/C^2) , -v/c sqrt (1-V^2/ C^2)?

if yes i can't get the relation u'u_' =1 (u_' indicate a subscripts)

yukyuk
While the specific answer depends on your metric, this looks wrong.

On a practical level, in relativity you lower the index of your tensor with the metric, g_ab.

This means that given a vector u^a = (a,b), the contravariant vector is

(g_00*a + g_01*b, g_10*a + g_11*b)

The dot product of u^a u_a, the covariant and contravariant vectors, is supposed to give the "length" of the vector. In relativity, the vectors are generally 4-vectors, and the "length" of the vector is its invariant Lorentz interval. Your vector is a bit odd, having only 2 components - I'm assuming that one of them is probably time, and the other is probably some spatial dimension.

Your result would only work with a metric of
-1 0
0 -1

which is unlikely. A much more likely candidate would be either
-1 0
0 1

OR

1 0
0 -1

(both sorts of sign convention are used). This would be for a flat "Minkowski" space-time.


Because this is posted in the relativity forum, and not the math forum, I'm assuming you are asking about covariant and contravariant vectors in relativity. In other applications, the vectors could be 3-vectors, and the "length" the usual length.
 

Related Threads for: Contravaint and covariant

  • Last Post
2
Replies
28
Views
2K
  • Last Post
Replies
2
Views
611
  • Last Post
Replies
3
Views
952
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
7
Views
4K
Replies
1
Views
716
  • Last Post
Replies
14
Views
980
Top