Convergence of Series

  • Thread starter limddavid
  • Start date
  • #1
6
0

Homework Statement



"Determine whether the following series converge:

[itex]\sum_{n \geq 2} \frac{n^{ln (n)}}{ln(n)^{n}}[/itex]

and

[itex]\sum_{n \geq 2} \frac{1}{(ln(n))^{ln(n)}}[/itex]

Homework Equations



The convergence/divergence tests (EXCEPT INTEGRAL TEST):

Ratio
Dyadic
Comparison
P-test
Cauchy Criterion
Root Criterion
Alternating Series Test/Leibniz Criterion
Abel's Criterion

The Attempt at a Solution



My TA said it was helpful to use the Dyadic Criterion to solve series involving logs... I believe this is an exception. It made the equation really convoluted:

[itex]\sum_{n \geq 2} \frac{2^{2k}*k*ln(2)}{(k*ln(2))^{2^{k}}}[/itex]

I'm sure I have to use some combination of the tests, but I kind of need to be pointed in the right direction... I have no idea how to work with that series..

Thank you!
 

Answers and Replies

  • #2
48
0

Homework Statement



"Determine whether the following series converge:

[itex]\sum_{n \geq 2} \frac{n^{ln (n)}}{ln(n)^{n}}[/itex]

and

[itex]\sum_{n \geq 2} \frac{1}{(ln(n))^{ln(n)}}[/itex]

Homework Equations



The convergence/divergence tests (EXCEPT INTEGRAL TEST):

Ratio
Dyadic
Comparison
P-test
Cauchy Criterion
Root Criterion
Alternating Series Test/Leibniz Criterion
Abel's Criterion

The Attempt at a Solution



My TA said it was helpful to use the Dyadic Criterion to solve series involving logs... I believe this is an exception. It made the equation really convoluted:

[itex]\sum_{n \geq 2} \frac{2^{2k}*k*ln(2)}{(k*ln(2))^{2^{k}}}[/itex]

I'm sure I have to use some combination of the tests, but I kind of need to be pointed in the right direction... I have no idea how to work with that series..

Thank you!
Try the root test; C=lim{n->inf} sup n^(ln(n)/n)/ln(n). Then Let u=ln(n) and substitute this into the root test. Answer should converge to C=0. So the series converges absolutely.
 
  • #3
6
0
Try the root test; C=lim{n->inf} sup n^(ln(n)/n)/ln(n). Then Let u=ln(n) and substitute this into the root test. Answer should converge to C=0. So the series converges absolutely.
Ok.. I tried to root test, but I'm not sure how I can take the limsup of what I get:

n^(u/n)/u
 
  • #4
48
0
Ok.. I tried to root test, but I'm not sure how I can take the limsup of what I get:

n^(u/n)/u
u=ln(n) → eu2e-u/u and so you get convergence to 0.
 

Related Threads on Convergence of Series

  • Last Post
Replies
5
Views
674
  • Last Post
Replies
1
Views
815
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
4
Views
833
  • Last Post
Replies
13
Views
680
Replies
4
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
5
Views
4K
  • Last Post
Replies
3
Views
646
  • Last Post
Replies
2
Views
994
Top