Convergence test

  • #1
rainwyz0706
36
0
There are five statements:
(a) If n^2 an → 0 as n → ∞ then ∑ an converges.
(b) If n an→ 0 as n → ∞ then ∑an converges.
(c) If ∑an converges, then ∑((an )^2)converges.
(d) If ∑ an converges absolutely, then ∑((an )^2) converges.
(e) If ∑an converges absolutely, then |an | < 1/n for all sufficiently large n.

I suppose that a,d,e are true, not quite sure about b,c.
Could anyone please give me some hints how to prove the statements or give some counter-example? Any help is greatly appreciated!
 

Answers and Replies

  • #2
36,871
8,915
There are five statements:
(a) If n^2 an → 0 as n → ∞ then ∑ an converges.
(b) If n an→ 0 as n → ∞ then ∑an converges.
(c) If ∑an converges, then ∑((an )^2)converges.
(d) If ∑ an converges absolutely, then ∑((an )^2) converges.
(e) If ∑an converges absolutely, then |an | < 1/n for all sufficiently large n.

I suppose that a,d,e are true, not quite sure about b,c.
Could anyone please give me some hints how to prove the statements or give some counter-example? Any help is greatly appreciated!
Start by trying to prove the ones you think are true. For the ones you think are untrue, look at the series whose behavior you know, and see if any might serve as a counterexample.

Show us what you have tried, and we'll take it from there.
 
Last edited:
  • #3
Tedjn
737
0
(a) There exists N such that |n2an| < 1 for all n > N. Where can you go from there?

(b) Trying the same trick as in (a) doesn't quite work. In fact, a counterexample is the series [itex]\sum_{i=2}^\infty \frac{1}{n\log n}[/itex]. Prove that it is a counterexample.

(c) Think about alternating series.

(d) What is the limit of |an| as n tends to infinity? What is the size of an2 relative to |an|?

(e) This is a weird one and precisely as you've stated it, it isn't true. Are you sure you want |an| < 1/n where the subscript and denominator are both the same n?
 
  • #4
rainwyz0706
36
0
I've got them. Thanks a lot!
 

Suggested for: Convergence test

Replies
1
Views
538
  • Last Post
Replies
4
Views
701
Replies
8
Views
483
  • Last Post
Replies
10
Views
431
Replies
7
Views
514
Replies
3
Views
3K
Replies
2
Views
244
  • Last Post
Replies
2
Views
403
  • Last Post
Replies
4
Views
612
Replies
2
Views
298
Top