I found this in another threat(adsbygoogle = window.adsbygoogle || []).push({});

however i do not know wat he means by convergent sequences. Is something like when u trying to take the limit at an ASYMPTOTE of a fuction? i know that the limit doesnt not exist( or goes to infinitive i cannot recall) is that wat he means by convergent sequence?

Let f:I->R and let c in I. I want to negate the statements: "f has limit L at c" and "f is continuous at c". Are these correct?

f does not have limit L at c if there exists e>0 such that for some sequence {x_n} converging to c, |f(x_n)-L|>e for every n.

f is not continuous at c if there exists e>0 such that for some sequence {x_n} converging to c, |f(x_n)-f(c)|>e for every n.

edit: also, what is the negation of "f has a limit at c"?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Convergent sequence?

**Physics Forums | Science Articles, Homework Help, Discussion**