1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Converging to sets

  1. Jul 5, 2007 #1
    Back in the fractal craze, I wrote a simple application to generate the Mandelbrot set, and after way too many wasted hours, I noticed that the generating function frequently converged to sets of repeating values rather than single values. For example, for a 5 value convergent, the terms of the set are related by:

    f(x1) = f(x0)
    f(x2) = f(x1)
    f(x4) = f(x3)
    f(x0) = f(x4)

    I have two questions related to this:
    - Do sets of values that are related by these types of loops, have a name?
    - Do these types of convergents have any practical applications?

    Reason I ask is that I'm playing around with ideas for a "loopless" computer language and have come up with a few formulas that can eliminate iteration in specialized cases but these "poly-convergents" have always interested me as a potential way to directly calculate more complex states. Problem is though, I don't know what they're called.

    Thanks for any info
  2. jcsd
  3. Jul 5, 2007 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It's called an "attracting cycle".

    As you adjust the parameters, you can watch the cycle "bifuricate"; e.g. you can watch a fixed point split into a two-cycle.
  4. Jul 5, 2007 #3
    Thanks Hurky
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook