- #1

- 21

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter moh salem
- Start date

- #1

- 21

- 0

- #2

- 18,668

- 8,631

- #3

- 21

- 0

Question: What do you mean the following concepts? and when to use?

Let ##\delta _{X}:[0,2]\longrightarrow \lbrack 0,1]## }be the

modulus of convexity of X, and defined by

##\delta _{X}(\varepsilon )=\inf \{1-\frac{1}{2}\left\Vert x-y\right\Vert

:\left\Vert x\right\Vert \leq 1, \left\Vert y\right\Vert \leq 1, \left\Vert x-y\right\Vert \geq \varepsilon \}.##

And let ##\rho _{X}:[0,\infty \lbrack \longrightarrow \lbrack 0,\infty \lbrack##

be the modulus of smoothness of X, and defined by

##\rho _{X}(t) =\sup \{\frac{1}{2}(\left\Vert x+y\right\Vert +\left\Vert

x-y\right\Vert )-1:\left\Vert x\right\Vert =1,\left\Vert

y\right\Vert =t\} ##

Let ##\delta _{X}:[0,2]\longrightarrow \lbrack 0,1]## }be the

modulus of convexity of X, and defined by

##\delta _{X}(\varepsilon )=\inf \{1-\frac{1}{2}\left\Vert x-y\right\Vert

:\left\Vert x\right\Vert \leq 1, \left\Vert y\right\Vert \leq 1, \left\Vert x-y\right\Vert \geq \varepsilon \}.##

And let ##\rho _{X}:[0,\infty \lbrack \longrightarrow \lbrack 0,\infty \lbrack##

be the modulus of smoothness of X, and defined by

##\rho _{X}(t) =\sup \{\frac{1}{2}(\left\Vert x+y\right\Vert +\left\Vert

x-y\right\Vert )-1:\left\Vert x\right\Vert =1,\left\Vert

y\right\Vert =t\} ##

Last edited by a moderator:

Share: