Correction of Vector Operator computations

In summary: x} \\ \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial z}} \end{pmatrix}=\begin{pmatrix}\frac{\partial}{\partial y} \frac{\partial \phi}{\partial z}- \frac{\partial}{\partial z} \frac{\partial \phi}{\partial y} \\ \frac{\partial}{\partial z}\frac{\partial \phi}{\partial x} - \frac{\partial}{\partial x} \frac{\partial \phi}{\partial z} \\ \frac{\partial}{\partial x} \frac{\partial \phi}{\partial y}- \frac{\partial}{\partial y} \frac
  • #1
Bibhatsu
5
0

Homework Statement



A. For the vector [tex]\vec{A}=a\vec{e}_{x}+b\vec{e}_{y}+c\vec{e}_{z}[/tex], compute [tex]div(\vec{A})[/tex] and [tex]rot(\vec{A})[/tex]

B. Show that [tex] rot(grad(\phi (x,y,z)))=0[/tex] for a potential function [tex] \phi(x,y,z) [/tex]

C. Compute [tex] div \ grad \frac{1}{r}\equiv \vec{\nabla} \cdot \vec{\nabla} \frac{1}{r}\equiv \Delta \frac{1}{r} [/tex]

The Attempt at a Solution



A. [tex] div(\vec{A})= \vec{\nabla}}\vec{A}=\vec{\nabla}\begin{pmatrix}{a\\b \\c} \end{pmatrix} =\begin{pmatrix} \frac{\delta}{\delta x}\\ \frac{\delta}{\delta y} \\ \frac{\delta}{\delta z} \end{pmatrix} \begin{pmatrix}a\\b\\c \end{pmatrix}=\frac{\delta}{\delta x}a+ \frac{\delta}{\delta y}b + \frac{\delta}{\delta z}c= 0+0+0= 0 [/tex]

[tex] rot(\vec{A})=\vec{\nabla}\times \vec{A}=\vec{\nabla}\times \begin{pmatrix}a\\b\\c \end{pmatrix}= \begin{pmatrix}\frac{\delta}{\delta x}\\ \frac{\delta}{\delta y} \\ \frac{\delta}{\delta z} \end{pmatrix} \times \begin{pmatrix}a\\b\\c \end{pmatrix}=\begin{pmatrix}\frac{\delta}{\delta y}c-\frac{\delta}{\delta z}b \\ \frac{\delta}{\delta z}a-\frac{\delta}{\delta x}c \\ \frac{\delta}{\delta x}b-\frac{\delta}{\delta y}a \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} [/tex]

B. [tex] rot(grad(\phi)))=\vec{\nabla}\times \begin{pmatrix}\frac{\delta \phi}{\delta x} \\ \frac{\delta \phi}{\delta y} \\ \frac{\delta \phi}{\delta z} \end{pmatrix}= \begin{pmatrix}\frac{\delta}{\delta x}\\ \frac{\delta}{\delta y} \\ \frac{\delta}{\delta z} \end{pmatrix} \times \begin{pmatrix}\frac{\delta \phi}{\delta x} \\ \frac{\delta \phi}{\delta y} \\ \frac{\delta \phi}{\delta z}} \end{pmatrix}=\begin{pmatrix}\frac{\delta}{\delta y} \frac{\delta \phi}{\delta z}- \frac{\delta}{\delta z} \frac{\delta \phi}{\delta y} \\ \frac{\delta}{\delta z}\frac{\delta \phi}{\delta x} - \frac{\delta}{\delta x} \frac{\delta \phi}{\delta z} \\ \frac{\delta}{\delta x} \frac{\delta \phi}{\delta \delta y}- \frac{\delta}{\delta y} \frac{\delta \phi}{\delta x} \end{pmatrix} =\begin{pmatrix}0\\ 0 \\ 0 \end{pmatrix} [/tex]

C. [tex] \operatorname{div} \operatorname{grad}\frac{1}{r}= \nabla \nabla \frac{1}{r}= \begin{pmatrix} \frac{\delta}{\delta x} \\ \frac{\delta}{\delta y} \\ \frac{\delta}{\delta z} \end{pmatrix} \begin{pmatrix}\frac{-x}{r^{3}}\\ \frac{-y}{r^{3}}\\ \frac{-z}{r^{3}} \end{pmatrix}= \frac{\delta}{\delta x}\frac{-x}{r^{3}}+ \frac{\delta}{\delta y}\frac{-y}{r^{3}} + \frac{\delta}{\delta z}\frac{-z}{r^{3}} = \frac{2x^{2}-y^{2}-z^{2}}{r^{5}}+\frac{2y^{2}-x^{2}-z^{2}}{r^{5}}+\frac{2z^{2}-x^{2}-y^{2}}{r^{5}}= 0 [/tex]I would be very grateful for corrections and comments. Thank you.Bibhatsu
 
Last edited:
Physics news on Phys.org
  • #2
:A. div(\vec{A})= \vec{\nabla}}\vec{A}=\vec{\nabla}\begin{pmatrix}{a\\b \\c} \end{pmatrix} =\begin{pmatrix} \frac{\partial}{\partial x}\\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \begin{pmatrix}a\\b\\c \end{pmatrix}=\frac{\partial a}{\partial x}+ \frac{\partial b}{\partial y} + \frac{\partial c}{\partial z}= 0+0+0= 0 rot(\vec{A})=\vec{\nabla}\times \vec{A}=\vec{\nabla}\times \begin{pmatrix}a\\b\\c \end{pmatrix}= \begin{pmatrix}\frac{\partial}{\partial x}\\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix}a\\b\\c \end{pmatrix}=\begin{pmatrix}\frac{\partial c}{\partial y}-\frac{\partial b}{\partial z} \\ \frac{\partial a}{\partial z}-\frac{\partial c}{\partial x} \\ \frac{\partial b}{\partial x}-\frac{\partial a}{\partial y} \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} B. rot(grad(\phi)))=\vec{\nabla}\times \begin{pmatrix}\frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y} \\ \frac{\partial \phi}{\partial z} \end{pmatrix}= \begin{pmatrix}\frac{\partial}{\partial x}\\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix}\frac{\partial \phi}{\partial
 

1. What is a vector operator?

A vector operator is a mathematical operator that acts on a vector quantity, such as position, velocity, or force, to produce a new vector quantity. It is represented by a symbol, such as ∇ (del), and is used in various areas of physics, including mechanics, electromagnetism, and quantum mechanics.

2. What is the purpose of correcting vector operator computations?

The purpose of correcting vector operator computations is to account for errors or inconsistencies in the mathematical operations performed on vector quantities. This ensures that the final result is accurate and reliable, and can be used to make predictions or solve problems in various scientific fields.

3. What are some common errors in vector operator computations?

Some common errors in vector operator computations include incorrect application of the operator, incorrect order of operations, omitting necessary terms, and misinterpreting the physical meaning of the results. These errors can lead to incorrect solutions and should be corrected to ensure accuracy.

4. How can I correct vector operator computations?

To correct vector operator computations, it is important to carefully review the mathematical steps and ensure that each operation is performed correctly. If an error is identified, it can be corrected by re-doing the calculation or using a different method. Additionally, it can be helpful to consult with other experts or resources to verify the results.

5. Why is it important to use accurate vector operator computations?

Using accurate vector operator computations is crucial in scientific research and applications because it ensures that the results are reliable and can be used to make informed decisions or predictions. Inaccurate computations can lead to incorrect conclusions and potentially hinder progress in understanding and advancing scientific knowledge.

Similar threads

  • Introductory Physics Homework Help
Replies
8
Views
702
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
838
  • Introductory Physics Homework Help
Replies
6
Views
569
  • Introductory Physics Homework Help
Replies
12
Views
199
  • Introductory Physics Homework Help
Replies
6
Views
159
  • Introductory Physics Homework Help
Replies
10
Views
904
  • Introductory Physics Homework Help
Replies
1
Views
346
  • Introductory Physics Homework Help
Replies
1
Views
888
  • Introductory Physics Homework Help
Replies
11
Views
2K
Back
Top