Countable collection

Show that the countable collection
{(a,b) x (c,d) | a<b and c<d and a,b,c,d are rational}
is a basis for R2.

I was wondering... if i have to use the definition of a basis in order to solve this?
soo... meaning.. a basis:
1. for each x [tex]\in[/tex]X, there is at least one basis element B containing x.
2. If x belongs to the intersection of two basis elements B1 and B2, then there is a basis element B3 containing x such that B3[tex]\subset[/tex]B1[tex]\cap[/tex]B2.

right? or am i wrong?

Thank You,
Jonnah Song


Science Advisor
Homework Helper
Yes, I think that's exactly what you're supposed to do.
In my experience, topology often makes small steps which either involve checking that the definition is satisfied, or applying the correct theorem / lemma.

So let p = (x, y) be a point in R^2 and start by finding an element in the basis which contains p;


Science Advisor
Gold Member
Or, if you want a more general result, prove that if the collection B is
a basis for X , and B' is a basis for Y , then BxB' is a basis for XxY.
It may be a good idea to try both exercises. (Note that I am not saying--
it is actually false -- that the product topology on a product XxY is the same
as the product of the topologies, i.e., the order topology on XxY is not necessarily
the same as the product of the order topologies of X and Y. A specific example
is that of the order topology on R; order intervals in R^2 are not the product
of order intervals in R . An example when it is true, is for the discreet

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving