Covariant gamma matrices are defined by(adsbygoogle = window.adsbygoogle || []).push({});

$$\gamma_{\mu}=\eta_{\mu\nu}\gamma^{\nu}=\{\gamma^{0},-\gamma^{1},-\gamma^{2},-\gamma^{3}\}.$$

-----------------------------------------------------------------------------------------------------------------------------------------------------------

The gamma matrix ##\gamma^{5}## is defined by

$$\gamma^{5}\equiv i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}.$$

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Is the covariant matrix ##\gamma_{5}## then defined by

$$\gamma_{5} = i\gamma_{0}(-\gamma_{1})(-\gamma_{2})(-\gamma_{3})?$$

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Covariant gamma matrices

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Covariant gamma matrices | Date |
---|---|

A Gamma matrices | Jan 13, 2018 |

I Problem with Commutator of Gauge Covariant Derivatives? | Sep 5, 2017 |

A Gauge invariance and covariant derivative | Nov 2, 2016 |

Insights Higher Prequantum Geometry IV: The Covariant Phase Space - Transgressively - Comments | Oct 9, 2015 |

Variation on Quantum cross covariance and CHSH | Nov 23, 2014 |

**Physics Forums - The Fusion of Science and Community**