Covariant vs absolute derivative

  • Thread starter pmb
  • Start date

pmb

In the online text on differential geometry

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/pdfs/DiffGeom.pdf [Broken]

The author calls the "derivative along the curve" (aka absolute derivative) the "covariant derivative" which is wrong.

It's on box 8.2 on page 59.

Does anyone else here refer to DP/dtau as the covariant derivative of P?

Pete
 
Last edited by a moderator:
Waner talks about total and partial covariant derivatives on pp. 59-61 and even covariant differentials on p. 62, with no regard to the business of setting new lower indices at all. There is a clue on p. 62, exercise set 8 #10(b), where a contravariant derivative is suggested but not exhibited. This yields some fruit under web search.

There seem to be covariant AND contravariant differential geometries, covariant AND contravariant affine connections, and covariant AND contravariant differentiations afoot. So, I suppose, that means partial and total derivatives of both kinds.

some found links -->

http://emis.bibl.cwi.nl/proceedings/Coimbra99/pdgloja.pdf [Broken]
contravariant connections on poisson manifolds {Fernandes}

http://www.math.toronto.edu/henrique/keio.pdf [Broken]
poisson vector bundles, contravariant connections and deformations {Bursztyn}

The name Izu Vaisman seems to be important.

{SIGH!}, so be the shifting sands of terminology!!

Regards,
 
Last edited by a moderator:

Related Threads for: Covariant vs absolute derivative

Replies
6
Views
3K
  • Posted
Replies
15
Views
4K
Replies
1
Views
3K
Replies
4
Views
457
Replies
2
Views
2K
Replies
20
Views
1K
Replies
8
Views
7K
  • Posted
Replies
1
Views
709

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top