Suppose there are ants at each vertex of a triangle and they all simultaneously crawl along a side of the triangle to the next vertex. The probability that no two ants will encounter one another is 2/8, since the only two cases in which no encounter occurs is when all the ants go left, i.e., clockwise -- LLL -- or all go right, i.e., counterclockwise -- RRR. In the six other cases -- RRL, RLR, RLL, LLR, LRL, and LRR -- an encounter occurs. Now suppose that, analogously, there is an ant at each vertex of a polyhedron and that the ants all simultaneously move along one edge of the polyhedron to the next vertex, each ant choosing its path randomly. For each of the following polyhedra, what is the probability that no two ants will encounter one another, either en route or at the next vertex? Express your answer reduced to lowest common denominators, e.g., 2/8 must be reduced to 1/4.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Crawling Ant Problems

Loading...

Similar Threads for Crawling Problems | Date |
---|---|

I The Halting Problem | Mar 21, 2018 |

B Problem in Counting - Number of Passwords | Feb 23, 2018 |

I A specific combination problem | Feb 6, 2018 |

I A seemingly simple problem about probability | Jan 29, 2018 |

**Physics Forums - The Fusion of Science and Community**