Cross product of vectors

  • Thread starter B4ssHunter
  • Start date
  • #1
178
4
i have a vector xK where k is the unit vector perpendicular to other unit vectors i and j
when i multiply a force which has 5k for instance another which has ( 3 i + 4 j )
i multiply 5k by 3i then 5k by 4j right ?
the answer would be ( 15 j - 20 i ) right ?
 

Answers and Replies

  • #2
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
9,970
134
"5k for instance another which has ( 3 i + 4 j )
i multiply 5k by 3i then 5k by 4j right ?"
"the answer would be ( 15 j - 20 i ) right ? "
If your k-vector is the left-hand factor in the cross product, yes.
If your k-vector is your right-hand factor, the signs should be changed.
 
  • #3
HallsofIvy
Science Advisor
Homework Helper
41,833
963
It's hard to make sense out of this. I presume you are asking specifically about the cross product of the vectors 5k and 3i+ 4j. The basic rules for the cross product is that ixj= k, jxk= i, kxi= j, the cross product is "anti- symmetric" (uxv= -vxu), and linear.

The fact that the cross product is linear means that 5k x(3i+ 4j)= 15 kxi+ 20 kxj. The fact that the cross product is anti-symmetric means that kxj= -jxk= -i, so that 5k x (3i+ 4j)= 15j- 20i.

Most people remember the cross product with the mnemonic
[tex](ai+ bj+ ck)\times (di+ ej+ fk)= \left|\begin{array}{ccc}i & j & k \\ a & b & c \\ d & j & k\end{array}\right|[/tex]
where the right side is the determinant.

Here, that would give
[tex]5k \times 3i+ 4j= \left|\begin{array}{ccc}i & j & k \\ 0 & 0 & 5 \\ 3 & 4 & 0 \end{array}\right|[/tex]
Expanding the determinant on the second row, that is
[tex]-5\left|\begin{array}{cc}i & j \\ 3 & 4 \end{array}\right|= -5(4i- 3j)= 15j- 20i[/tex]
 
Last edited by a moderator:
  • #4
mathman
Science Advisor
7,932
484
It's hard to make sense out of this. I presume you are asking specifically about the cross product of the vectors 5k and 3i+ 4j. The basic rules for the cross product is that ixj= k, jxk= i, kxi= j, the cross product is "anti- symmetric" (uxv= -vxu), and linear.

The fact that the cross product is linear means that 5k x(3i+ 4j)= 15 kxi+ 20 kxj. The fact that the cross product is anti-symmetric means that kxj= -jxk= -i, so that 5k x (3i+ 4j)= 15j- 20i.

Most people remember the cross product with the mnemonic
[tex](ai+ bj+ ck)\times (di+ ej+ fk)= \left|\begin{array}{ccc}i & j & k \\ a & b & c \\ d & j & k\end{array}\right|[/tex]
where the right side is the determinant.

Here, that would give
[tex]5k \times 3i+ 4j= \left|\begin{array}{ccc}i & j & k \\ 0 & 0 & 5 \\ 3 & 4 & 0 \end{array}\right|[/tex]
Expanding the determinant on the second row, that is
[tex]-5\left|\begin{array}{cc}i & j \\ 3 & 4 \end{array}\right|= -5(4i- 3j)= 15j- 20i[/tex]

The determinant looks wrong.
 

Related Threads on Cross product of vectors

Replies
5
Views
668
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
8
Views
4K
Replies
2
Views
1K
  • Last Post
Replies
13
Views
2K
  • Last Post
Replies
10
Views
2K
Replies
2
Views
5K
Replies
5
Views
7K
Replies
10
Views
3K
Replies
6
Views
34K
Top