(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] cubic reciprocity?

I would like to prove the following conjecture:

If [tex]p \equiv 2\ (mod\ 3)[/tex] is a prime, then the cubing function [tex]x \mapsto x^3 [/tex] is a permutation of [tex]\mathbb{Z}_p [/tex].

I've tried to find a contradiction to the negation by assuming that if [tex]n \neq m\ (mod\ 3)[/tex], but [tex]n^3 \equiv m^3\ (mod\ 3)[/tex], then since [tex]m^3 - n^3 = (m-n)(m^2-mn+n^2)[/tex], we must have [tex](m^2-mn+n^2) \equiv 0\ (mod\ 3)[/tex] to avoid a contradiction concerning zero-divisors. Now I'm stuck.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cubic reciprocity?

**Physics Forums | Science Articles, Homework Help, Discussion**