1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Cumulant Generating Function

  1. May 6, 2010 #1
    Cumulative generating function is
    [tex]K(t)=K_1(t)t+K_2(t)\frac{t^2}{2!}+K_3(t)\frac{t^3}{3!}+...[/tex]
    where
    [tex]K_{n}(t)=K^{(n)}(t)[/tex]

    Now
    [tex]K(t)=ln M(t)=ln E(e^{ty})=ln E(f(0)+f'(0)\frac {t}{1!}+f''(0)\frac{t^2}{2!}+...)=ln E(1+\frac{t}{1!}y+\frac{t^2}{2!} y^2+...)=ln [1+\frac{t}{1!} E(Y)+\frac{t^2}{2!} E(Y^2)+...]=ln [1+\frac{t}{1!}\mu'_1+\frac{t^2}{2!}\mu'_2+...][/tex]
    where [tex]\mu'_n=E(Y^n)[/tex]
    [tex]=>K(0)=ln1=0[/tex]

    Also
    [tex]K'(t)=\frac{1}{M(t)}M'(t)[/tex]
    where
    [tex]M(0)=1; M'(t)=\mu'_1+\frac{t}{1}\mu'_2+\frac{t^2}{2!}\mu'_3+...[/tex]
    [tex]=>M'(0)=\mu'_1[/tex]

    In fact
    [tex]M^{(n)}(0)=\mu'_n[/tex]

    So
    [tex]K'(0)=\frac{\mu'_1}{1}=\mu'_1[/tex]

    Furthermore
    [tex]K''(t)=\frac{M''(t)M(t)-[M'(t)]^2}{[M(t)]^2}[/tex]
    [tex]=>K''(0)=\frac{\mu'_2*1-(\mu'_1)^2}{1^2}=\mu'_2-(\mu'_1)^2=E(Y^2)-[E(Y)]^2=\sigma^2[/tex]

    Is this correct?
     
    Last edited: May 6, 2010
  2. jcsd
  3. May 11, 2010 #2
    Correction:
    K(t) is:
    [tex]K(t)=K_1t+K_2\frac{t^2}{2!}+...[/tex]
    where
    [tex]K_n=K^{(n)}(0)[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Cumulant Generating Function
  1. Generating Functions (Replies: 3)

Loading...