I know that this isn’t very practical but I discovered the following curious inequality when I was playing around with [tex]d(n)[/tex] where [tex]d(n)[/tex] gives the number of divisors of [tex]n \ \epsilon \ N[/tex]. If [tex]n[/tex] has [tex]p[/tex] prime factors (doesn’t have to be distinct prime factors e.g. [tex]12 = 2^2 \ 3 [/tex] has got three prime factors (2,2,3)), Then(adsbygoogle = window.adsbygoogle || []).push({});

[tex] p + 1 \leq d(n) \leq \sum_{k=0}^{p} _{p} C_{k} [/tex]

I don’t know if this has been previously discovered but giving its simplicity it wouldn’t surprise me if it has.

**Physics Forums - The Fusion of Science and Community**

# Curious Inequality

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Curious Inequality

Loading...

**Physics Forums - The Fusion of Science and Community**