(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Determine the curl on teh surface of the bounded region consisting of the bottom part of the sphere with equation 625=z^2+x^2+y^2 where z<=20, in the force field F(x,y,z)=<x^2 * y,x*y^2 * z,2x>

2. Relevant equations

http://img187.imageshack.us/img187/291/1fdf437d8e18a23191b63dfnj8.png [Broken]

3. The attempt at a solution

I used Stokes' theorem to change the double integral for curl into a single circulation circle around the top of the bottom section of the sphere:

625=z^2+x^2+y^2; z=20; 225=r^2

Let x=15cos t; y=15sin t; z=20 (I'm still writing x,y, and z instead of their substituted values in the following integral though): integral (<x^2*y,xy^2z,2z> dot <-15sin(t),15cos(t)>) dt from t=0 to t=2pi ("dot" represents a dot product). Is this right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Curl Over Region

**Physics Forums | Science Articles, Homework Help, Discussion**