(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I am trying to calculate the curvature of a curve given by the position function:

[itex]\vec{r}(t)= sin(t) \vec{i} + 2 \ cos (t) \ vec{j}[/itex]

The correct answer must be:

[itex]\kappa (t) = \frac{2}{(cos^2(t) + 4 \ sin^2 (t))^{3/2}}[/itex]

I tried several times but I can't arrive at this answer.

2. Relevant equations

Curvature is given by:

[itex]\kappa(t) = \frac{||T'(t)||}{||r'(t)||}[/itex]

Where

[itex]T (t) = \frac{r'(t)}{||r'(t)||}[/itex]

3. The attempt at a solution

[itex]r'(t) = \left\langle cos(t), \ -2 sin(t) \right\rangle[/itex]

[itex]||r'(t)|| = \sqrt{cos^2(t) + (2 \ sin(t))^2} = \sqrt{3 \ sin^2t+1}[/itex]

Therefore

[itex]T = \frac{cos(t)}{\sqrt{3 \ sin^2 (t) +1}} \ \vec{i}, \ \frac{-2 \ sin(t)}{\sqrt{3 \ sin^2 (t) +1}} \vec{j}[/itex]

[itex]\frac{dT}{dt} = \frac{-4 \ sin(t)}{(3 \ sin^2(t) +1)^{(3/2)}} \ \vec{i} + \frac{-2 \cos (t)}{(3 \ sin^2(t) +1)^{(3/2)}} \ \vec{j}[/itex]

[itex]||T'(t)|| = \sqrt{\left( \frac{-4 \ sin(t)}{3 \ sin^2(t) + 1)^{3/2}} \right)^2 + \left( \frac{-2 \cos (t)}{(3 \ sin^2(t) + 1)^{3/2}} \right)^2}[/itex]

[itex]= \sqrt{ \frac{16 \ sin^2(t)}{(3 \ sin^2 t)^3} + \frac{4 \ cos^2(t)}{(3 \ sin^2 t)^3}}[/itex]

Putting this in the equation given

[itex]\kappa = \sqrt{ \frac{16 \ sin^2(t)}{(3 \ sin^2 t)^3} + \frac{4 \ cos^2(t)}{(3 \ sin^2 t)^3}}. \frac{1}{\sqrt{3 \ sin^2t+1}}[/itex]

But I can't see how this can be simplified to get to the correct answer. I appreciate any guidance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Curvature math problem

**Physics Forums | Science Articles, Homework Help, Discussion**