This is the first thought that I had a question about, but it is highly dependent on a specific model of the universe, so I asked whether or not my model of the universe is feasible in a previous post, "Model of the Universe (I)". I have tried searching on Google for an answer, but I am not getting relevant results.(adsbygoogle = window.adsbygoogle || []).push({});

I want to know whether centripetal force/acceleration is applicable on objects with velocity moving across a curved space-time. For example, if, hypothetically, the universe is a hypersphere, and we lived on its surface-volume, and moved at velocity "v", then is there not a centripetal acceleration of (v^2)/r outward? The "r" would be the radius of the hypersphere, or the age of the universe in meters (converted from seconds in the normal-unit-conversion).

Thus, objects moving at different velocities across different curves cause different distortions and variations in the progress of time.

(Before I continue, I'd like to state a disclaimer that I have not gone past high school physics, and know nearly nothing of theoretical physics. These are all speculations, so forgive me if they seem naive and out of the question.)

Well, if everything I've said thus far is true, including the previous post on the model of the universe, I was thinking maybe relativistic effects concerning an object's speed and its time was simply a higher-dimensional incarnation of the basic concept: centripetal acceleration.

(And though this is an immature method, I am simply hoping that other effects such as the gain of relativistic mass are a secondary effect, or even, illusion, of a higher-dimensional centripetal acceleration. And I am "hoping" because I have not given much thought to these other relativistic effects as of yet, and I don't want to unless this one part concerning the distortion of time is confirmed to be at least "possible".)

Thank you for your time.

- Andrew Cheong -

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Curvature of the Universe (II)

Loading...

Similar Threads for Curvature Universe | Date |
---|---|

Interacting Universes | Feb 25, 2018 |

I Exploring Einstein's theory about the curvature of space | Dec 31, 2017 |

B How can we find the curvature of a star or planet? | Feb 15, 2017 |

I Why do planets follow the same curvature at both foci? | Dec 28, 2016 |

**Physics Forums - The Fusion of Science and Community**