Let T be a linear operator on the the finite dimensional space V, and let R be the range of T.(adsbygoogle = window.adsbygoogle || []).push({});

(a) Prove that R has a complementary T-invariant subspace iff R is independent of the null space N of T.

(b) If R and N are independent, prove that, N is the unique T-invariant subspace complementary to R.

I supposed R has a complementary T - invariant subspace, say, W. Then , R should be T- admissible. I assumed to the contrary, that R intersection T is not equal to {0}. I took a point in the intersection but could not proceed further. Please suggest.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cyclic decompostions

**Physics Forums | Science Articles, Homework Help, Discussion**