Hi everyone.(adsbygoogle = window.adsbygoogle || []).push({});

So it's apparent that G/N cyclic --> G cyclic. But the converse does not seem to hold; in fact, from what I can discern, given N cyclic, all we need for G/N cyclic is that G is finitely generated. That is, if G=<g1,...,gn>, we can construct:

G/N=<(g1 * ... *gn)*k>

Where k is the generator of N and * the group operation. To create each coset g1N... gnN, we simply take gi for i=0,1,...n and then set all other (n-1) elements to the identity under the group operation, {e}. Thus we have n generators for g, but only one generator for G/N. Is this reasoning sound?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Cyclic quotient group?

**Physics Forums | Science Articles, Homework Help, Discussion**