- #1
- 11
- 0
Hi, 2nd year physics student here
doing a past paper on quantum mechanics everything is going nice and dandy then this happens..
question: prove that the normalisation constant A is given by A = [tex]\frac{1}{2^1^/^2}[/tex] ([tex]\frac{a}{\pi}[/tex])^1/4
ok seems fairly straight forward but i keep getting this A = [tex]\frac{1}{2^1^/^2 (a*\pi)^1^/^4}[/tex]
wave function ------> [tex]\Psi[/tex] (x,t) = A*2*[a*x*(e^-ax^2/2)(e^-3/2iwt)
useful integral: Inegration from - infinity to + infinity of x[tex]^{2}[/tex]*e[tex]^{-C}[/tex][tex]^{x^{}2}[/tex] dx = [tex]\frac{1}{2}[/tex] ([tex]\frac{\pi}{C^{3}}[/tex])[tex]^{\frac{1}{2}}[/tex]
any flawless mathematicians out there..?
doing a past paper on quantum mechanics everything is going nice and dandy then this happens..
question: prove that the normalisation constant A is given by A = [tex]\frac{1}{2^1^/^2}[/tex] ([tex]\frac{a}{\pi}[/tex])^1/4
ok seems fairly straight forward but i keep getting this A = [tex]\frac{1}{2^1^/^2 (a*\pi)^1^/^4}[/tex]
wave function ------> [tex]\Psi[/tex] (x,t) = A*2*[a*x*(e^-ax^2/2)(e^-3/2iwt)
useful integral: Inegration from - infinity to + infinity of x[tex]^{2}[/tex]*e[tex]^{-C}[/tex][tex]^{x^{}2}[/tex] dx = [tex]\frac{1}{2}[/tex] ([tex]\frac{\pi}{C^{3}}[/tex])[tex]^{\frac{1}{2}}[/tex]
any flawless mathematicians out there..?
Last edited: