Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Dark matter on trial?

  1. Apr 19, 2012 #1
    Serious Blow to Dark Matter Theories?

    http://www.eso.org/public/news/eso1217/

    http://www.eso.org/public/archives/releases/sciencepapers/eso1217/eso1217.pdf
     
  2. jcsd
  3. Apr 19, 2012 #2

    Chronos

    User Avatar
    Science Advisor
    Gold Member

    This appears interesting:

    No evidence of dark matter in the solar neighborhood
    http://arxiv.org/abs/1204.3919

    It should at least stimulate some discussion about dark matter distributions.
     
  4. Apr 19, 2012 #3
    Its really hard to tell much from such a brief discussion, and barely-legible plot.... but even radially at the distance of the sun, the baryonic contribution to the halo-potential is dominant. Looking at the z-dispersion is going to be completely dominated by baryons; with huge uncertainties in even that matter distribution. Claiming this as '8-sigma' and '5-sigma' exclusions seems very unlikely.
     
  5. Apr 19, 2012 #4
    I was just about to post the same paper and ask if anyone has insights....

    The ESO summary page of the project is here:

    http://www.eso.org/public/news/eso1217/

    excerpt:


    Here is a brief summary from the research paper:

     
    Last edited: Apr 19, 2012
  6. Apr 19, 2012 #5

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Just to help complete the bibliography
    http://arxiv.org/abs/1009.0925
    The Futile Search for Galactic Disk Dark Matter
    José Luis G. Pestaña, Donald H. Eckhardt
    (Submitted on 5 Sep 2010)
    Several approaches have been used to search for dark matter in our galactic disk, but with mixed results: maybe yes and maybe no. The prevailing approach, integrating the Poisson-Boltzmann equation for tracer stars, has led to more definitive results: yes and no. The touchstone yes analysis of Bahcall et al. (1992) has subsequently been confirmed or refuted by various other investigators. This has been our motivation for approaching the search from a different direction: applying the Virial Theorem to extant data. We conclude that the vertical density profile of the disk is not in a state of equilbrium and, therefore, that the Poisson-Boltzmann approach is inappropriate and it thereby leads to indefensible conclusions.
    12 pages. Accepted for publication in ApJ Letters

    Here's an earlier Moni-Bidin et al
    http://arxiv.org/abs/1202.1799

    Here's the abstract of the brief (4 page) paper Chronos pointed to:
    http://arxiv.org/abs/1204.3919
    No evidence of dark matter in the solar neighborhood
    C. Moni Bidin, G. Carraro, R. A. Mendez, R. Smith
    (Submitted on 17 Apr 2012)
    We measured the surface mass density of the Galactic disk at the solar position, up to 4 kpc from the plane,by means of the kinematics of ~400 thick disk stars. The results match the expectations for the visible mass only, and no dark matter is detected in the volume under analysis. The current models of dark matter halo are excluded with a significance higher than 5sigma, unless a highly prolate halo is assumed, very atypical in cold dark matter simulations. The resulting lack of dark matter at the solar position challenges the current models.
    4 pages

    Here's the recent longer paper by the authors:
    http://arxiv.org/abs/1204.3924
    Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood
    C. Moni Bidin, G. Carraro, R. A. Mendez, R. Smith
    (Submitted on 17 Apr 2012)
    We estimated the dynamical surface mass density Sigma at the solar position between Z=1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars. The formulation is exact within the limit of validity of a few basic assumptions. The resulting trend of Sigma(Z) matches the expectations of visible mass alone, and no dark component is required to account for the observations. We extrapolate a dark matter (DM) density in the solar neighborhood of 0±1 mMsun pc-3, and all the current models of a spherical DM halo are excluded at a confidence level higher than 4sigma. A detailed analysis reveals that a small amount of DM is allowed in the volume under study by the change of some input parameter or hypothesis, but not enough to match the expectations of the models, except under an exotic combination of non-standard assumptions. Identical results are obtained when repeating the calculation with kinematical measurements available in the literature. We demonstrate that a DM halo would be detected by our method, and therefore the results have no straightforward interpretation. Only the presence of a highly prolate (flattening q>2) DM halo can be reconciled with the observations, but this is highly unlikely in LambdaCDM models. The results challenge the current understanding of the spatial distribution and nature of the Galactic DM. In particular, our results may indicate that any direct DM detection experiment is doomed to fail, if the local density of the target particles is negligible.
    35 pages
     
    Last edited: Apr 19, 2012
  7. Apr 19, 2012 #6
    All I can say right now is ... Wow, the implications of this apparently well done observational effort can be enormous, DM is a necessary hypothesis for the current cosmological model. I guess there will soon be attempts to shoot this work down, but I'm curious about the arguments that will be used.
     
  8. Apr 19, 2012 #7

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    It is possible that Pestaña Eckhardt already shot it down by showing that the method (which is an old one) is wrong. See post #5 for their abstract.

    Although they get published in ApJ Letters, Pestaña Eckhardt are not the mainest of stream either. Their cure may be worse than the disease. I'm puzzled.
     
    Last edited: Apr 19, 2012
  9. Apr 19, 2012 #8
    From the Moni-Bidin paper:"Sanchez-Salcedo et al. (2011) demonstrated the validity of assumption (I), that was recently questioned in the literature (Garrido Pestana & Eckhardt 2010)".
    I don't think any serious astrophysicist would use an assumption that has been agreed by the community to be wrong. It would be kind of silly. Apparently Pestaña and Eckhart have only other arxiv paper that seems to put forward a slightly cranky (at first sight)origin for the origin of DM, so their dismissing a method of falsifying DM seems a bit biased.
     
  10. Apr 19, 2012 #9

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    I see we both posted at the same time, your #8 just as I was editing to add my reservations to #7.
     
  11. Apr 19, 2012 #10

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Here is the Sanchez-Salcedo rebuttal of Pestaña Eckhardt.
    http://arxiv.org/abs/1103.4356
    On the vertical equilibrium of the local Galactic disk and the search for disk dark matter
    F.J. Sanchez-Salcedo, Chris Flynn, A.M. Hidalgo-Gamez
    (Submitted on 22 Mar 2011)
    Estimates of the dynamical surface mass density at the solar Galactocentric distance are commonly derived assuming that the disk is in vertical equilibrium with the Galactic potential. This assumption has recently been called into question, based on the claim that the ratio between the kinetic and the gravitational energy in such solutions is a factor of 3 larger than required if Virial equilibrium is to hold. Here we show that this ratio between energies was overerestimated and that the disk solutions are likely to be in Virial equilibrium after all. We additionally demonstrate, using one-dimensional numerical simulations, that the disks are indeed in equilibrium. Hence, given the uncertainties, we find no reason to cast doubt on the steady-state solutions which are traditionally used to measure the matter density of the disk.
    6 pages, 2 figures, accepted for publication in ApJ Letters
     
  12. Apr 19, 2012 #11
    I would say that if one takes seriously these observations and the simple and widely accepted assumptions they are based on (as explained on the paper), they are as incompatible with the current models as the FTL neutrino (maybe flawed) measure. But nevertheless it is much less likely to make news headlines, it is more subtle than a photon-neutrino race and therefore not so sellable as "Einstein was wrong" journalistic stuff.
     
  13. Apr 19, 2012 #12

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    I hope to see expert comment posted on arxiv. As non-expert all I can say right now is I'm puzzled, there seem to be serious contradictions as if some part of the picture has to give.
     
  14. Apr 20, 2012 #13

    Chronos

    User Avatar
    Science Advisor
    Gold Member

    I agree with marcus, it will be interesting to see how the pros react to this rather unexpected result. Perhaps we will have to wait for GAIA to resolve the issue.
     
  15. Apr 20, 2012 #14

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Sean Carroll has blogged about it:
    http://blogs.discovermagazine.com/cosmicvariance/2012/04/20/puzzles/
    He's not worried, plenty of evidence for DM on various scales (he gives links), and it could be unevenly distributed. All they showed was that there was less than expected in a certain local neighborhood region. In fact when DM is mapped we see the frequently uneven distribution of clouds of it. His attitude is pretty clear. You might want to have a look.
     
    Last edited: Apr 20, 2012
  16. Apr 20, 2012 #15
    Sweet; thanks marcus
     
  17. Apr 21, 2012 #16
    I thought when you talked about "expert comment" you meant someone well versed in the observational side, like a reknown astrophysicist, Carroll is actually a cosmologist/relativist and the comments he links are mainly by theoretical cosmologists that basically repeat the mantra that DM is predicted by the model at various scales rather than addressing the article directly. I see there is some questioning of he assumptions, but they don't add that these are the assumptions that astrophysical models normally use and they are backed by what is observed. No hint that they are willing to question as easily any of the assumptions of the cosmological model that are not backed by direct observation.
    At this point I'm sure someone will mention the Bullet Cluster, but then they should also mention Abell 520.
     
  18. Apr 21, 2012 #17
    I found this:
    The dark matter crisis: falsification of the current standard model of cosmology
    Pavel Kroupa (AIfA, Bonn)
    (Submitted on 11 Apr 2012)

    The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true. According to this theorem two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. In the model, type A dwarfs are distributed approximately spherically following the shape of the host galaxy DM halo, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Similar arguments apply to Andromeda. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM on galactic scales cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist, which yield an excellent description of astronomical observations. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics cannot be Einsteinian/Newtonian. Major problems with inflationary big bang cosmologies remain unresolved.

    Comments: Publications of the Astronomical Society of Australia (CSIRO Publishing), in press, LaTeX, 50 pages, 16 figures
    Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO); Galaxy Astrophysics (astro-ph.GA); General Relativity and Quantum Cosmology (gr-qc)
    Cite as: arXiv:1204.2546v1 [astro-ph.CO]

    http://arxiv.org/abs/1204.2546

    I checked the author in wikipedia and he seems to be a prestigious astrophysicist from the U. of Bonn with many published articles in mainstream journals.
     
  19. Apr 25, 2012 #18
    Regarding the last paper (Kroupa, 2012) mentioned, I've seen something about there being a large structure of globular clusters and dwarf galaxies oriented in a plane around the Milky Way which doesn't seem consistent with DM either.

    One sec, here's an article I found on it, can't find the original paper.
    http://www.alphagalileo.org/ViewItem.aspx?ItemId=119616&CultureCode=en

    Kroupa, Pflamm-Attenburg, and Pawlowski apparently.


    Edit: here it is, the ras site wasn't loading for me.
    http://arxiv.org/abs/1204.5176

    https://www.youtube.com/watch?v=
     
    Last edited by a moderator: Sep 25, 2014
  20. Apr 30, 2012 #19

    Dotini

    User Avatar
    Gold Member

    The RAS site and video loaded:
    http://www.ras.org.uk/news-and-pres...ways-companions-spell-trouble-for-dark-matter



    Brave words from Kroupa:
    "Our model appears to rule out the presence of dark matter in the universe, threatening a central pillar of current cosmological theory. We see this as the beginning of a paradigm shift, one that will ultimately lead us to a new understanding of the universe we inhabit."

    The Moni Bidin pdf:
    http://www.eso.org/public/archives/releases/sciencepapers/eso1217/eso1217.pdf

    From older files:
    http://www.newscientist.com/article/dn18839
    http://prl.aps.org/abstract/PRL/v105/i13/e131302
    http://arxiv.org/abs/1005.0380
    http://physicsworld.com/cws/article/news/2010/may/06/dark-matter-no-result-comes-under-fire <--Doubts
    http://arxiv.org/abs/1104.2549

    Following science since the 50's; seen paradigms come and go. Is it happening again, here and now?

    Respectfully submitted,
    Steve
     
    Last edited by a moderator: Sep 25, 2014
  21. May 2, 2012 #20

    Dotini

    User Avatar
    Gold Member

    http://www.scilogs.eu/en/blog/the-dark-matter-crisis/2012-04-19/dark-matter-gone-missing-in-many-places-a-crisis-of-modern-physics [Broken]

    The blog of Marcel Pawlowski has many interesting comments and links.

    Respectfully submitted,
    Steve
     
    Last edited by a moderator: May 6, 2017
  22. May 2, 2012 #21

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    IIRC he is Pavel Kroupa's graduate student at Uni Bonn. I see that Kroupa takes part in that blog, there are a comments by him on the current page. So one would expect that the blog is presenting the "dark matter in crisis" viewpoint.
     
    Last edited by a moderator: May 6, 2017
  23. May 2, 2012 #22
    The problem with all of this is that it's happening at scales at which lambda-CDM is not expected to provide useful predictions. Lambda-CDM is primarily a theory about the very large scale structure of the universe and it works really, really, really well at cosmological scales. Once you get to the scale of individual galaxies, then all sorts of stuff that isn't covered by Lambda-CDM starts to happen.
     
  24. May 2, 2012 #23
    Which is not hard to do. The current theories of dark matter presume that it's something like neutrinos that don't strongly interact with each other, whereas ordinary matter like protons and neutrons which do very strongly interact with each other. In that situation it's expected that the dark matter wouldn't track the baryonic matter.

    Think of it this way. Suppose you have two galaxies and you smash them together. The ordinary matter goes "splat" and stops moving. However, the dark matter won't go "splat" and it keeps moving. The fact that we see stuff like that already happening in the Bullet cluster says that Kroupa is setting up a strawman.

    The fact that LCDM "doesn't make sense" at the scale of galaxies is hardly a crisis. At the level of galaxy clusters you have all sorts of processes (i.e. colliding galaxies) that aren't taken into account by LCDM. In order for their to be a crisis, you have to hit LCDM at the cosmological level. One thing that blog itself mentions is that in order to fit the CMB observations, you have to assume a sterile neutrino. Trouble with that is that once you assume this, then you run into galaxy lumpiness and nucleosynthesis problems.

    The other thing is that this is hardly a metaphysical argument. We can actually see and map dark matter through gravitational lensing. If you say that galaxies don't track dark matter, that's handwaving. However, if you can show through gravitational lensing that at galactic scales, baryonic matter does in fact separate from dark matter, that's a firm observation.
     
  25. May 2, 2012 #24
    Not yet.

    Sometimes the standard model wins. I remember the globular cluster age and helium crisis of the 1990's which made the big bang look a little wobbly for a while. Right now (and things can change quickly), it smells more like that, than any sort of paradigm shift.

    The problem with all of these observations is that they don't offer any new interpretations or challenges against the cosmological evidence for dark matter. They all involve galactic scale stuff at which the cosmological models are expected to break down.

    Now for there to be a real paradigm shift someone has to come up with some new interpretation of all of the reasons we think dark matter exists. So far all of the attempts to do that have gone nowhere.
     
  26. May 3, 2012 #25
    Thinking about it some more, I'm not surprised that LCDM seems to work badly for galactic scales.....

    LCDM models the universe as

    (universe) = (average stuff) + (ordinary matter bumps) + (dark matter bumps)

    This means that the interactions are

    (evolution of the universe) = (average evolution) + (ordinary matter + average universe interaction) + (dark matter + average universe interaction) + (ordinary/ordinary interaction) + (ordinary/dark interaction) + (dark/dark interaction)

    Now what normally happens is that last three terms are ignored, and that the interaction between ordinary matter and dark matter consists only of gravitation interaction. Because most of the interaction is between the "average" universe and the "bumps", the dark matter and ordinary matter end up in the same areas.

    That works very well at the early universe, because the "average density" is high and the "bumps" are small. It's likely to work very badly now because once you have individual galaxies, the "bumps" are huge, the "average" is small, and the interaction between the bumps are the most important part of the equation.

    The other thing that occurs to me is that if you consider the interaction between dark matter and ordinary matter, it may be possible to create what in solid-state would be called an "effective field theory." What happens in metals, is that when electrons move around, the rest of the metal reacts, and you can model this by assuming that the electromagnetism changes.

    Now it would be cool if this works for galaxies. Gravity causes dark matter to react in a way that you can replace gravity with an "effective force" which would get you the MOND results.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook