Dark Matter

  • Thread starter LSulayman
  • Start date
  • #1
LSulayman
42
0
Is it true that, if there was enough dark matter in the universe it could stop the expansion of it?
If it is, can someone explain to me how?
 

Answers and Replies

  • #2
nicksauce
Science Advisor
Homework Helper
1,272
5
Well, roughly, speaking, yes.

In general the universe can have one of three topologies. (see http://en.wikipedia.org/wiki/Shape_of_the_Universe). Either the universe is below the critical density and will expand forever (this is called an open universe), or the universe is at the critical density and will expand forever (this is called a flat universe), or the universe is above the critical density and will eventually stop collapsing and start contracting (this is called a closed universe). Observations indicate that the universe is very close to being flat.

So in principle, if there was more dark matter in the universe, so that the density was more than the critical density, it would eventually stop expanding. However, the same effect could be had by adding more dark energy, or more regular matter.
 
  • #3
or the universe is at the critical density and will expand forever (this is called a flat universe)

Would it be correct to say that in a flat universe the expansion rate decreases asymptotically and that the size of the universe increases asymptotically never exceeding a certain size?
 
  • #4
universe11
32
0
Dark energy dominates the energy density and put that kind of matter/energy content into Einstein's Equations and you get an accelerating universe.
Cosmologists estimate that the acceleration began roughly 5 billion years ago.
 
  • #5
nicksauce
Science Advisor
Homework Helper
1,272
5
Would it be correct to say that in a flat universe the expansion rate decreases asymptotically and that the size of the universe increases asymptotically never exceeding a certain size?

From the Friedmann equations, the expansion rate is

[tex]H^2 = H_0^2\left( \Omega_M(a^{-3}) + \Omega_{\Lambda}\right)[/tex]

So in a flat universe the expansion rate asymptotes to [tex]H_0\sqrt{\Omega_{\Lambda}}[/tex].

The proper size of the observable universe is given by

[tex] R = \frac{a}{H_0}\int\frac{da}{a^2\sqrt{\Omega_Ma^{-3}+\Omega_{\Lambda}}}[/tex]

So if there is dark energy, then this will asymptotes to a finite value, but if there is no dark energy, then it will be unbounded.
 

Suggested for: Dark Matter

  • Last Post
Replies
7
Views
448
  • Last Post
Replies
25
Views
1K
  • Last Post
Replies
13
Views
853
Replies
1
Views
246
Replies
4
Views
382
Replies
7
Views
651
  • Last Post
Replies
31
Views
2K
  • Last Post
Replies
4
Views
744
  • Last Post
Replies
12
Views
990
Replies
12
Views
898
Top