i have to prove that the sequence {a(adsbygoogle = window.adsbygoogle || []).push({}); _{k}} is decreasing, where

[tex]\{a_k\} = \{\left({1+\frac{1}{k}}\right)^{-k}\}[/tex]

this is what i did:

[tex]a_k = {\left(\frac{k}{k+1}}\right)^k[/tex]

[tex]a_{k+1}-a_{k}[/tex]

[tex]= {\left(\frac{k+1}{k+2}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)}^{k}[/tex]

[tex]= {\left(\frac{1+\frac{1}{k}}{1+\frac{2}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}[/tex]

[tex]< {\left(\frac{1+\frac{1}{k}}{1+\frac{1}{k}}}\right)^{k+1}-{\left(\frac{k}{k+1}}\right)^{k}[/tex]

[tex]= 1 - \left({\frac{k}{k+1}}\right)^{k}[/tex]

[tex]< 1-1[/tex] since [tex]\left({\frac{k}{k+1}}\right)^{k} < 1[/tex]

therefore, [tex]a_{k+1}-a_{k} < 0[/tex]

therefore, the sequence is decreasing.

am i right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Decreasing sequence (proof)

**Physics Forums | Science Articles, Homework Help, Discussion**